

CRASH TEST EVALUATION OF A PROTOTYPE ZIG-ZAG BOX BEAM END TERMINAL: MASH TEST DESIGNATION NO. 3-31

Submitted by

Karla Lechtenberg, M.S.M.E. Research Engineer Jim. C. Holloway, M.S.C.E., E.I.T. Research Engineer & Assistant Director – Physical Testing Division

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director Kellon Ronspies Former Graduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Outdoor Test Site 4630 N.W. 36th Street Lincoln, Nebraska 68524

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

NEW YORK STATE DEPARTMENT OF TRANSPORTATION

50 Wolf Road, 6th Floor Albany, New York 12232

MwRSF Research Report No. TRP-03-391-20

December 16, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

Government Accession No.	3. Recipient's Catalog No.			
4. Title and Subtitle Crash Test Evaluation of a Prototype Zig-Zag Box Beam End Terminal: MASH Test Designation No. 3-31				
			Faller, R.K., and Ronspies, K.B.	8. Performing Organization Report No. TRP-03-391-20
			and Address ſwRSF)	10. Work Unit No.
University of Nebraska-LincolnOutdoor Test Site:Main Office:Outdoor Test Site:Prem S. Paul Research Center at Whittier School4630 N.W. 36th StreetRoom 130, 2200 Vine StreetLincoln, NebraskaLincoln, Nebraska 68583-085368524				
Address sportation	13. Type of Report and Period Covered Final Report: 2016 – 2020			
50 Wolf Road, 6th Floor Albany, New York 12232				
	Faller, R.K., and Ronspies, K.B. and Address IwRSF) Outdoor Test Site: ittier School 4630 N.W. 36th St Lincoln, Nebraska 68524			

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

The New York State Department of Transportation (NYSDOT) desired to crash test an end terminal connected to box beam in a "zig zag" formation to evaluate its safety performance under the *Manual for Assessing Safety Hardware* (MASH 2016) criteria. Test no. NYT-1 was conducted on the "zig-zag" box beam end terminal according to MASH 2016 test designation no. 3-31. The system consisted of standard box beam guardrail supported by steel posts with a "zig-zag" box beam terminal. The posts were spaced at 72 in. (1,829 mm) at center. The top rail mounting height of the box beam rail was 27 in. (686 mm) from the ground line.

In test no. NYT-1, the vehicle impacted the system at 62.7 mph (101 km/h) at an angle of 0.1 degrees, resulting in a kinetic energy of 655.5 kip-ft (889 kJ). During impact, the vehicle first contacted the end terminal assembly, then travelled through the zig-zag box beam. This action caused rail section nos. 1 through 3 to deflect downstream and the rail section nos. 4 through 13 to deflect to the traffic side of the system. Post nos. 1 through 13 all deflected downstream, and post no. 14 rotated downstream. Once the vehicle made contact with the straight box beam between post nos. 8 and 9, the rail section snagged on the vehicle. This behavior caused the right fender, the right-front door, and the front of the right-rear door to tear away from the frame. The right-front window also shattered as a result of the snag event. As a result, test no. NYT-1 did not successfully meet the evaluation criteria for MASH 2016 test designation no. 3-31. Per guidance from NYSDOT, no further crash tests were conducted on the system.

17. Key Words Highway Safety, Roadside Appur Barriers, MASH, Box Beam, End Compliance Test		18. Distribution Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161		
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of Pages	22. Price	
Unclassified	Unclassified	192		

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the New York State Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, New York State Department of Transportation, nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of New York do not endorse products or manufacturers.

DISCLOSURE

In accordance with UNL's Conflict of Interest disclosure policy, J. Reid has a financial interest in Safety by Design, developer of the SKT and FLEAT W-beam and BEAT box-beam guardrail terminals.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Chen Fang, Post-Doctoral Research Associate.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that contributed to this project: (1) New York State Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the end terminal and conducting the crash test.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor R.W. Bielenberg, M.S.M.E., E.I.T., Research Engineer S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer J.D. Rasmussen, Ph.D., P.E., Research Associate Professor C.S. Stolle, Ph.D., E.I.T., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Associate Professor M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

New York Department of Transportation

Lyman T. Hale III, P.E., Senior Engineer Pratip Lahiri, P.E., Standards and Specifications Section Rick Wilder, P.E., Design Services Bureau Rochelle Hosley, P.E., Operations/Traffic and Safety John Ferry, Construction and NYSDOT Test Witness

Federal Highway Administration

Jim Growney, P.E., New York Division Office Christine Thorkildsen, P.E., Technical Advisory Group Emmett McDevitt, P.E., Technical Advisory Group

TABLE OF CONTENTS

DISCLAIMER STATEMENT	ii
DISCLOSURE	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	x
1 INTRODUCTION	
1.1 Background	
1.2 Objective	
1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA	2
2.1 Test Requirements	
2.2 Evaluation Criteria	
2.3 Soil Strength Requirements	
3 DESIGN DETAILS	6
4 TEST CONDITIONS	45
4.1 Test Facility	
4.2 Vehicle Tow and Guidance System	
4.3 Test Vehicles	
4.4 Simulated Occupant	
4.5 Data Acquisition Systems	
4.5.1 Accelerometers	
4.5.2 Rate Transducers	
4.5.3 Retroreflective Optic Speed Trap	
4.5.4 Digital Photography	
5 FULL-SCALE CRASH TEST NO. NYT-1	
5.1 Static Soil Test	
5.2 Weather Conditions	
5.3 Test Description	
5.4 Barrier Damage	
5.5 Vehicle Damage	
5.6 Occupant Risk	
5.7 Discussion	

6 SUMMARY AND	CONCLUSIONS	80
7 CRITICAL ANAL	YSIS OF ZIG ZAG TERMINAL	
7.1 Sequence	of Events	
	ndations	
7.3.1 N	Non-Energy Absorbing (Gating Terminal) Design	89
7.3.2 H	Energy-Absorbing (Non-Gating Terminal) Design	89
8 REFERENCES		
9 APPENDICES		
Appendix A	Material Specifications	92
	Material Specifications	
	Vehicle Center of Gravity Determination	161
	Vehicle Center of Gravity Determination Static Soil Tests	161
Appendix B. Appendix C.	Vehicle Center of Gravity Determination	161 163

LIST OF FIGURES

Figure 1. System Layout, Test No. NYT-1	7
Figure 2. Post Sections, Test No. NYT-1	8
Figure 3. End Assembly, Test No. NYT-1	9
Figure 4. Splice Details, Test No. NYT-1	
Figure 5. Upstream End Details, Test No. NYT-1	11
Figure 6. Upstream Anchor Cable Mounting, Test No. NYT-1	12
Figure 7. Downstream Anchor Details, Test No. NYT-1	13
Figure 8. Downstream Anchor Mounting Details, Test No. NYT-1	
Figure 9. Post Assembly Details, Test No. NYT-1	
Figure 10. Post Assembly Details, Test No. NYT-1	
Figure 11. Anchor Cable Details, Test No. NYT-1	
Figure 12. HFT Anchor, Test No. NYT-1	
Figure 13. Upstream End Terminal Assembly, Test No. NYT-1	19
Figure 14. Cable Catcher Assembly Details, Test No. NYT-1	
Figure 15. Downstream Cable Anchor Assembly Details, Test No. NYT-1	
Figure 16. Downstream Cable Anchor Assembly Details, Test No. NYT-1	
Figure 17. Post Details, Test No. NYT-1	
Figure 18. Post Component Details, Test No. NYT-1	
Figure 19. Cable Anchor Component Details, Test No. NYT-1	
Figure 20. Cable Anchor Component Details, Test No. NYT-1	
Figure 21. HFT Anchor Component Details, Test No. NYT-1	
Figure 22. Upstream End Terminal Component Details, Test No. NYT-1	
Figure 23. Upstream End Terminal Component Details, Test No. NYT-1	
Figure 24. Rail Components, Test No. NYT-1	
Figure 25. Splice Plate Details, Test No. NYT-1	
Figure 26. Splice and Connection Plate Details, Test No. NYT-1	
Figure 27. Hardware Details, Test No. NYT-1	
Figure 28. Bill of Materials, Test No. NYT-1	34
Figure 29. Bill of Materials, Test No. NYT-1	
Figure 30. Bill of Materials, Test No. NYT-1	
Figure 31. Test Installation, Test No. NYT-1	
Figure 32. Test Installation-End Terminal, Test No. NYT-1	
Figure 33. Test Installation Post and Rail Details for Post Nos. 1 through 8, Test No. NYT-1	
Figure 34. Test Installation Post and Rail Details for Post Nos. 9 through 26, Test No. NYT-1.	
Figure 35. Test Installation, Splice Details, Test No. NYT-1	
Figure 36. Test Installation, Splice Details; Test No. NYT-1	
Figure 37. Test Installation, Upstream Anchor Details, Test No. NYT-1	
Figure 38. Test Installation, Upstream Anchor Details, Test No. NYT-1	
Figure 39. Test Vehicle, Test No. NYT-1	
Figure 40. Test Vehicle Interior Floorboards, Test No. NYT-1	
Figure 41. Vehicle Dimensions, Test No. NYT-1	
Figure 42. Target Geometry, Test No. NYT-1	
Figure 43. Camera Locations, Speeds, and Lens Settings, Test No. NYT-1	
Figure 44. Impact Location, Test No. NYT-1	
Figure 45. Vehicle Final Position and Trajectory Marks, Test No. NYT-1	57

Figure 46. Sequential Photographs, Test No. NYT-1	58
Figure 47. Additional Sequential Photographs, Test No. NYT-1	59
Figure 48. Documentary Photographs, Test No. NYT-1	
Figure 49. Additional Documentary Photographs, Test No. NYT-1	61
Figure 50. System Damage Overview, Test No. NYT-1	
Figure 51. End Terminal Damage, Test No. NYT-1	
Figure 52. System Damage, Post Nos. 1 through 4, Test No. NYT-1	
Figure 53. System Damage, Post Nos. 5 through 8, Test No. NYT-1	
Figure 54. System Damage, Post Nos. 9 through 11, Test No. NYT-1	
Figure 55. Rail Damage, Test No. NYT-1	
Figure 56. Additional Rail Damage, Test No. NYT-1	
Figure 57. Splice Damage, Test No. NYT-1	
Figure 58. Vehicle Damage, Test No. NYT-1	12
Figure 59. Additional Vehicle Damage, Test No. NYT-1	/3
Figure 60. Vehicle Windshield Damage, Test No. NYT-1	
Figure 61. Occupant Compartment Damage, Test No. NYT-1 Figure 62. Vehicle Undercarriage Damage, Test No. NYT-1	
Figure 63. Summary of Test Results and Sequential Photographs, Test No. NYT-1	
Figure 64. Plan View of NYSDOT "Zig Zag" Box Beam End Terminal	
Figure 65. Plan and Elevation Views of Box Beam, Test No. NYT-1	
Figure 66. Rail Collapse Sequence and Fracture	
Figure 67. Column Effective Length Factors for Euler's Critical Loads [8]	
Figure 68. Longitudinal Force During Plastic Hinge Collapse	
Figure A-1. 84-in. (2,058-mm) Long Post for Post Nos. 1 through 8, Test No. NYT-1	
Figure A-2. 84-in. (2,058-mm) Long Post for Post Nos. 1 through 8, Test No. NYT-1	
Figure A-3. 63-in. (1,600-mm) Long Post for Post Nos. 9 through 26, Test No. NYT-1	98
Figure A-4. Soil Plate, Test No. NYT-1	99
Figure A-5. 6-in. (152-mm) Long Blockout, Test No. NYT-1	100
Figure A-6. 4 ¹ / ₂ -in. (114-mm) Long L-Bracket, Test No. NYT-1	
Figure A-7. 216-in. (5,486-mm) Long Box Beam, Test No. NYT-1	
Figure A-8. 142-in. (3,607-mm) Long Bent Box Beam, Test No. NYT-1	
Figure A-9. Splice Plate, Test No. NYT-1	104
Figure A-10. 25 ¹ / ₂ -in. (648-mm) Long Cut Box Beam, Test No. NYT	105
Figure A-11. ³ / ₈ -in. (9-mm) Bent Plate, Test No. NYT-1	
Figure A-12. Keel Plate, Test No. NYT-1	
Figure A-13. 72 ¹ / ₂ -in. (1,842-mm) Long Post for HFT Anchors, Test No. NYT-1	
Figure A-14. ³ / ₁₆ -in. (5-mm) Plate, Test No. NYT-1	
Figure A-15. ¹ / ₂ -in. (12-mm) Plate, Test No. NYT-1 Figure A-16. 4.8-in. (122-mm) Long L-Bracket, Test No. NYT-1	
Figure A-10. 4.o-m. (122-min) Long L-Bracket, Test No. N 11-1 Figure A-17. ½-in. (12-mm) Box Beam Cable Anchor Base Plate and Mounting Plate, Test	
NYT-1	
Figure A-18. ¹ / ₄ -in. (6-mm) Box Beam Cable Anchor Gusset, Test No. NYT-1	
Figure A-19. 48-in. (1219-mm) Long Box Beam, Test No. NYT-1	
Figure A-20. 24-in. (610-mm) Long C-Channel, Test No. NYT-1	
Figure A-21. 18-in. (457-mm) Long and 6 ¹ / ₂ -in. (165-mm) Long L-Bracket, Test No. NYT-	
Figure A-22. 56-in. (1,422-mm) Long L-Bracket, Test No. NYT-1	
Figure A-23. ³ / ₄ -in. (19-mm) Guardrail Cable, Test No. NYT-1	

Figure A-24. ¾-in. (19-mm) Guardrail Cable, Test No. NYT-1	119
Figure A-25. ¾-in. (19-mm) Wire Rope, Test No. NYT-1	120
Figure A-26. ¾-in. (19-mm) Wire Rope, Test No. NYT-1, Cont	121
Figure A-27. Bennett Cable End Fitter, Test No. NYT-1	122
Figure A-28. Bennett Cable End Fitter, Test No. NYT-1	123
Figure A-29. Bennet Threaded Turnbuckle, Test No. NYT-1	
Figure A-30. Bennet Threaded Turnbuckle, Test No. NYT-1, Cont	
Figure A-31. Crosby Jaw, Test No. NYT-1	
Figure A-32. Cable Wedges, Test No. NYT-1	127
Figure A-33. 11-in. (279-mm) Long Threaded Rod, Test No. NYT-1	
Figure A-34. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1	
Figure A-35. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1, Cont	
Figure A-36. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1	131
Figure A-37. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1, Cont	132
Figure A-38. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1	
Figure A-39. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1, Cont	134
Figure A-40. ¾-in. (19-mm) Square Nut, Test No. NYT-1	
Figure A-41. ¾-in. (19-mm) Square and Hex Nut, Test No. NYT-1	136
Figure A-42. 1-in. (25-mm) Diameter Heavy Hex Nut for Downstream Cable Assembly, Test No. N	
Figure A-43. 1-in. (25-mm) Diameter Plain Round Washer, Test No. NYT-1	138
Figure A-44. ¹ / ₂ -in. (6-mm) Diameter Hex Head Shear Bolt, Test No. NYT-1	139
Figure A-45. ¹ / ₄ -in. (6-mm) Diameter Nuts, Test No. NYT-1	
Figure A-46. ¹ / ₄ -in. (6-mm) Diameter Hex Head Bolt, Test No. NYT-1	141
Figure A-47. ¹ / ₄ -in. (6-mm) Flat Washer, Test No. NYT-1	142
Figure A-48. ³ / ₈ -in. (10-mm) Diameter Hex Head Bolt, Test No. NYT-1	143
Figure A-49. ³ / ₈ -in. (10-mm) Diameter Nuts, Test No. NYT-1	144
Figure A-50. ³ / ₈ -in. (10-mm) Plain Round Washer, Test No. NYT-1	
Figure A-51. ¹ / ₂ -in. (13-mm) Long Hex Head Bolt, Test No. NYT-1	
Figure A-52. ¹ / ₂ -in. (12-mm) Nuts, Test No. NYT-1	
Figure A-53. ¹ / ₂ -in. (12-mm) Diameter Plain Round Washer, Test No. NYT-1	148
Figure A-54. ¾-in. (19-mm) Diameter, 8-in. (203-mm) Long Hex Bolt, Test No. NYT-1	149
Figure A-55. ¾-in. (19-mm) Diameter, 8-in. (203-mm) Long Hex Bolt, Test No. NYT-1	
Figure A-56. ³ / ₄ -in. (19-mm) Diameter Hex Nut, Test No. NYT-1	
Figure A-57. ¾-in (19-mm) Diameter, 1½-in. (38-mm) Long Heavy Hex Head Bolt, Test N NYT-1	
Figure A-58. ³ / ₄ -in. (19-mm) Heavy Hex Nut, Test No. NYT-1	
Figure A-59. ³ / ₄ -in. (19-mm) Diameter, 2-in. (51-mm) Long Heavy Hex Head Bolt, Test No	
NYT-1	
Figure A-60. ³ / ₄ -in. (19-mm) Heavy Hex Nut, Test No. NYT-1	
Figure A-61. ³ / ₄ -in. (19-mm) Diameter Hardened Flat Washer, Test No. NYT-1	
Figure A-62. ³ / ₄ -in. (19-mm) Diameter Lock Washer, Test No. NYT-1	
Figure A-63. ⁷ / ₈ -in. (22-mm) Diameter, 8 ¹ / ₂ -in. (216-mm) Long Heavy Hex Head Bolt, Test	
NYT-1	
Figure A-64. ⁷ / ₈ -in. (22-mm) Diameter Nuts, Test No. NYT-1	
Figure A-65. 7/8-in (22-mm) Hardened Flat Washer, Test No. NYT-1	
Figure B-1. Vehicle Mass Distribution, Test No. NYT-1	162

LIST OF TABLES

Table 1. MASH TL-3 Crash Test Conditions	3
Table 2. MASH 2016 Evaluation Criteria for Terminals and Crash Cushions	4
Table 3. Weather Conditions, Test No. NYT-1	53
Table 4. Sequential Description of Impact Events, Test No. NYT-1	55
Table 5. Sequential Description of Impact Events, Test No. NYT-1, Cont	56
Table 6. Maximum Occupant Compartment Intrusions by Location	77
Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYT-1	78
Table 8. Summary of Safety Performance Evaluation	81
Table A-1. Bill of Materials, Test No. NYT-1	93
Table A-2. Bill of Materials, Test No. NYT-1, Cont	94
Table A-3. Bill of Materials, Test No. NYT-1, Cont	95

1 INTRODUCTION

1.1 Background

New York State Department of Transportation (NYSDOT) relies heavily on box beam guide rail along their roadsides and has experienced several penetration impacts with National Cooperative Highway Research Program (NCHRP) Report No. 350 [1] compliant box beam terminals. Further, NYSDOT was facing the prospect of losing their energy-absorbing terminal options, the WyBET and BEAT, for their box beam guide rail system. The WyBET was being discontinued and the manufacturer of the BEAT had indicated that they would "wait until the last minute" to conduct tests according to the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [2]. Consequently, NYSDOT was concerned that a MASH-compliant proprietary energy-absorbing box beam terminal might not be available when the MASH implementation deadline occurred. Therefore, NYSDOT desired to investigate the potential viability of a prototype box beam zig-zag end terminal through preliminary crash testing.

1.2 Objective

The objective of this report included an exploratory evaluation of the safety performance of a prototype box beam zig-zag end terminal through preliminary full-scale vehicle crash testing. The system was to be evaluated according to the Test Level 3 (TL-3) criteria of MASH 2016 [2].

1.3 Scope

The research objective was achieved by conducting one full-scale crash test on the NYSDOT box beam zig-zag end terminal according to MASH 2016 test designation no. 3-31. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the preliminary safety performance of the NYSDOT box beam zig-zag end terminal.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Historically, guide rail end terminal systems have been required to satisfy impact safety standards to be accepted by the Federal Highway Administration (FHWA) for use on National Highway System (NHS) construction projects or as a replacement for existing designs not meeting current safety standards. According to TL-3 of MASH 2016, gating end terminals must be subjected to nine full-scale vehicle crash tests. The nine full-scale crash tests are as follows:

- 1. Test designation no. 3-30 consisting of a 2,425-lb (1,100-kg) passenger car impacting at a nominal speed and angle of 62 mph (100 km/h) and 0 degrees, respectively, on the nose of the end terminal with a ¹/₄-point offset.
- 2. Test designation no. 3-31 consisting of a 5,000-lb (2,268-kg) pickup truck impacting at a nominal speed and angle of 62 mph (100 km/h) and 0 degrees, respectively, on the nose of the end terminal.
- 3. Test designation no. 3-32 consisting of a 2,425-lb (1,100-kg) passenger car impacting at a nominal speed and angle of 62 mph (100 km/h) and 5 to 15 degrees, respectively, on the nose of the end terminal.
- 4. Test designation no. 3-33 consisting of a 5,000-lb (2,268-kg) pickup truck impacting at a nominal speed and angle of 62 mph (100 km/h) and 5 to 15 degrees, respectively, on the nose of the end terminal.
- 5. Test designation no. 3-34 consisting of a 2,425-lb (1,100-kg) passenger car impacting at a nominal speed and angle of 100 km/h (62 mph) and 15 degrees, respectively, and at the Critical Impact Point (CIP) on the end terminal.
- 6. Test designation no. 3-35 consisting of a 5,000-lb (2,268-kg) pickup truck impacting at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively, and at the beginning of the Length-of-Need (LON) on the end terminal.
- 7. Test designation no. 3-36 consisting of a 5,000-lb (2,268-kg) pickup truck impacting at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively, and at the CIP with respect to the transition to the backup structure.
- 8. Test designation no. 3-37a consisting of a 5,000-lb (2,268-kg) pickup truck impacting at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively, and at the CIP for reverse direction impacts on the end terminal. Test designation no. 3-37b consisting of a 2,425-lb (1,100-kg) passenger car impacting at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively, and at the CIP for reverse direction impacts on the end terminal.
- 9. Test designation no. 3-38 consisting of a 3,307-lb (1,500-kg) intermediate car impacting at a nominal speed and angle of 62 mph (100 km/h) and 0 degrees,

respectively, on the nose of the end terminal, if it is demonstrated to be necessary following an analysis of selected test results.

The test conditions for TL-3 guide rail end terminals are summarized in Table 1.

			Impact Conditions			Impact Conditions			
Test Article	Test Test Designation Vehicle		Speed		Angle	Evaluation Criteria ¹			
	Designation	v ennene	(mph)	(km/h)	(degrees)	Chiefia			
	3-30	1100C	62	100	0	C,D,F,H,I,N			
	3-31	2270P	62	100	0	C,D,F,H,I,N			
	3-32 3-33	1100C	62	100	5 to 15	C,D,F,H,I,N			
Terminals		2270P	62	100	5 to 15	C,D,F,H,I,N			
	3-34	1100C	62	100	15	C,D,F,H,I,N			
	3-35	2270P	62	100	25	A,D,F,H,I			
	3-36	2270P	62	100	25	A,D,F,H,I			
	3-37a	2270P	62	100	25	C,D,F,H,I,N			
	3-37b	1100C	62	100	25	C,D,F,H,I,N			
	3-38	1500A	62	100	0	C,D,F,H,I,N			

Table 1. MASH TL-3 Crash Test Conditions

¹ Evaluation criteria explained in Table 2.

Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.						
	C.	Acceptable test article performance may be redirection, controlled penetration, or controlled stopping of the vehicle					
	D.	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.					
		2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.					
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.					
Occupant Risk	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
IX15K		Occupant Impact Velocity Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)			
	I.	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
		Occupant Ridedown Acceleration Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			
Post –Impact Vehicular Response	N.	Vehicle Trajectory behind the test article is acceptable.					

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the box-beam guardrail system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle.

Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 (W152x23.8) posts are installed near the impact region utilizing the same installation procedures are the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 in. and 20 in. (127 mm and 508 mm) measured at a height of 25 in. (635 mm) above the ground line. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5 in., 10 in., and 15 in. (127 mm, 254 mm, and 381 mm). Further details can be found in Appendix B of MASH 2016.

3 DESIGN DETAILS

The test installation consisted of 158 ft – $\frac{1}{4}$ in. (48.2 m) of box beam guardrail supported by steel posts with a "zig zag" box beam end terminal, as shown in Figures 1 through 30. All posts were spaced 72 in. (1,829 mm) on their center. The top mounting height of the box beam rail was 27 in. (686 mm) from the ground line. Photographs of the test installation are shown in Figures 31 through 38. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

Post nos. 1 through 8 were W6x9 (W152x13.4) ASTM A992 steel posts measuring 84 in. (2,134 mm) long with soil plates and embedded 57 in. (1,448 mm) into well-graded soil. The spacing between post nos. 1 through 9 were alternatively spaced 5 ft – 10 in. (1,778 mm) or 6 ft – 2 in. (1,880 mm) apart, starting with 5-ft 10-in. (1.8-m) spacing between post nos. 1 and 2. Post nos. 9 through 26 were S3x5.6 (S75x8.5) ASTM A36 steel posts measuring 63 in. (1,600 mm) long with soil plates and each post had an embedment depth of 36 in. (914 mm). Standard box beam was used between post nos. 9 and 26. Each post between post nos. 9 and 26 was spaced 72 in. (1,829 mm) apart. Splice plates with tapped holes were used at all rail splice locations.

ASTM A500 Grade B steel tube blockouts, 8 in. x 8 in. x 6 in. (203 mm x 203 mm x 152 mm) long, were used to connect the box beam rail to post nos. 1 through 8. ASTM A36 steel L-brackets, 3 in. x 2 in. x 4.8 in. (76 mm x 51 mm x 122 mm) long, were used to connect the box beam to post nos. 9 through 26. Bent rail was placed between post nos. 1 and 9 in alternating zig-zags, as shown in Figure 3. An end terminal assembly, as shown in Figures 1 and 5 was utilized on the upstream end of the system. The downstream anchorage assembly used anchor posts to provide tension resistance, as shown in Figure 7.

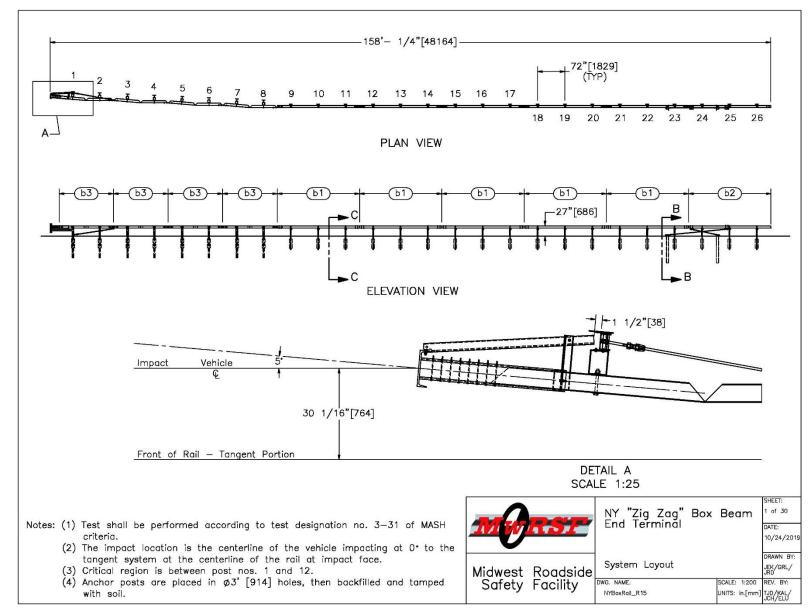


Figure 1. System Layout, Test No. NYT-1

 \neg

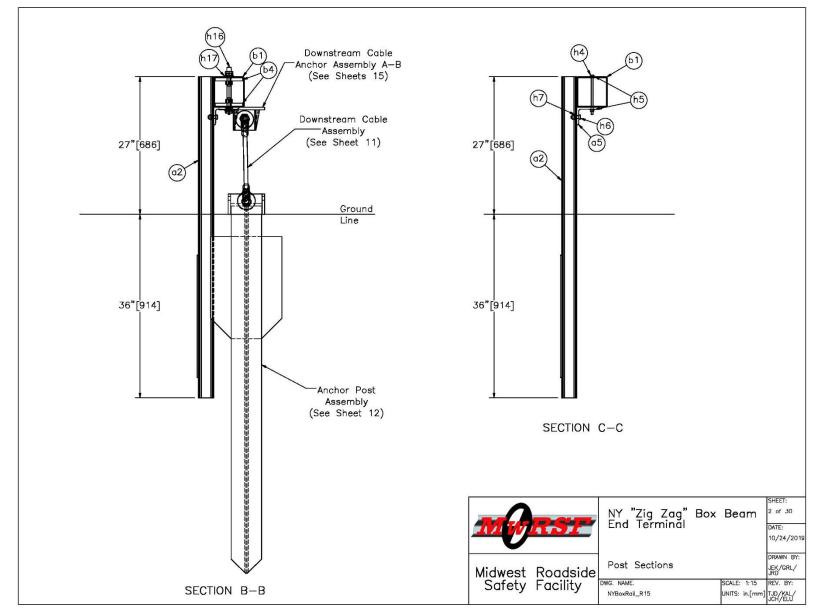


Figure 2. Post Sections, Test No. NYT-1

 ∞

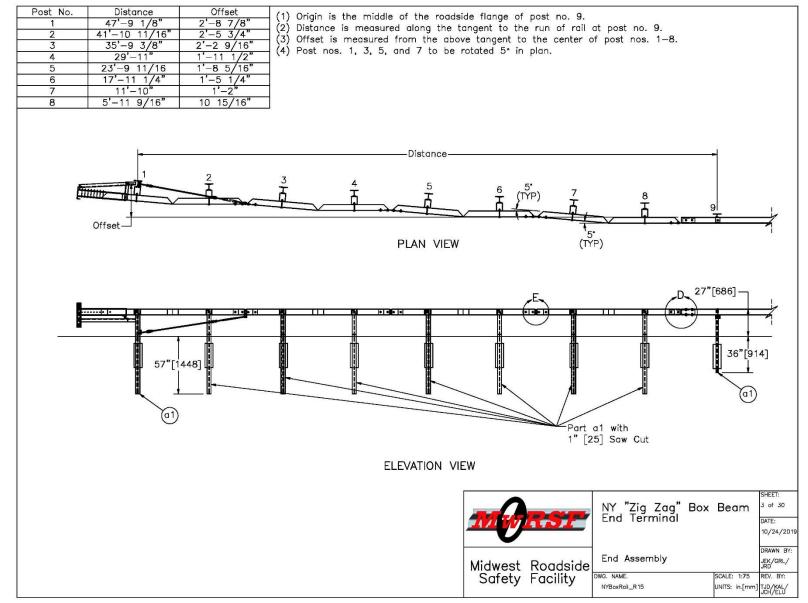


Figure 3. End Assembly, Test No. NYT-1

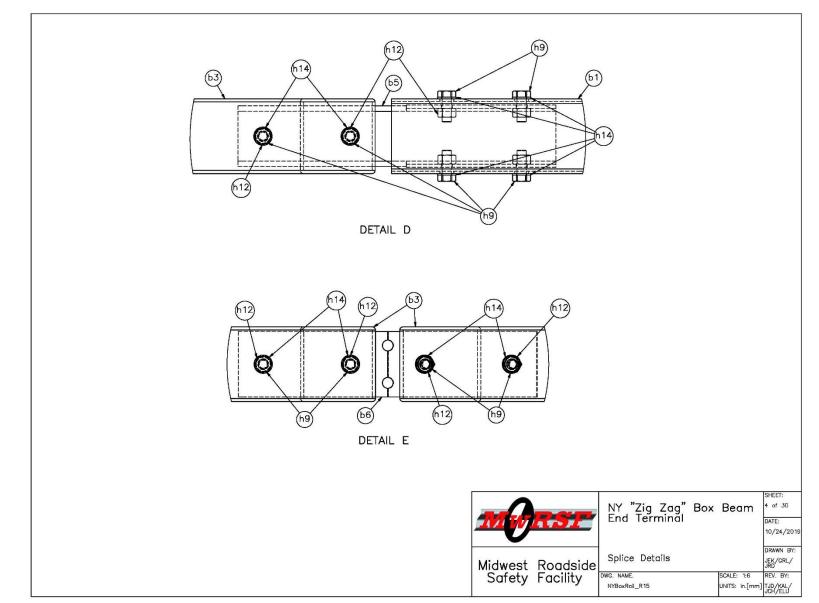


Figure 4. Splice Details, Test No. NYT-1

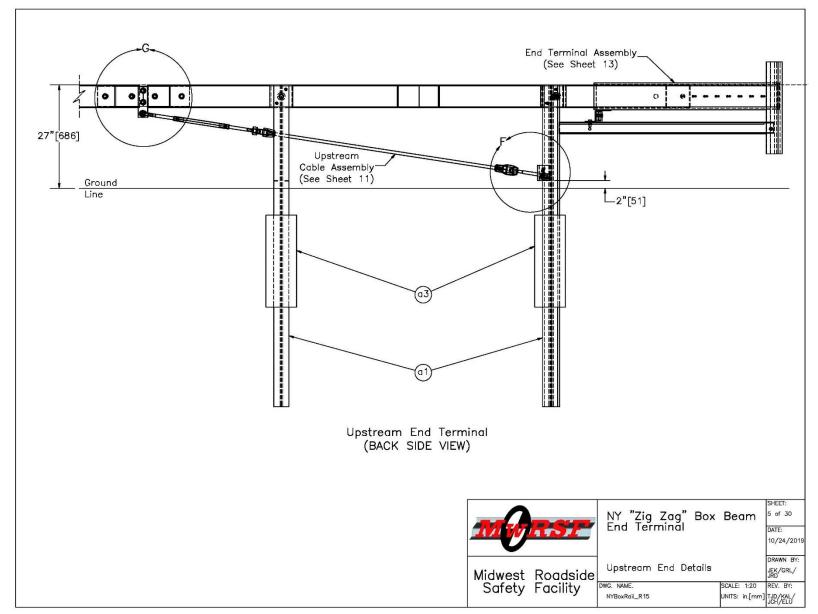


Figure 5. Upstream End Details, Test No. NYT-1

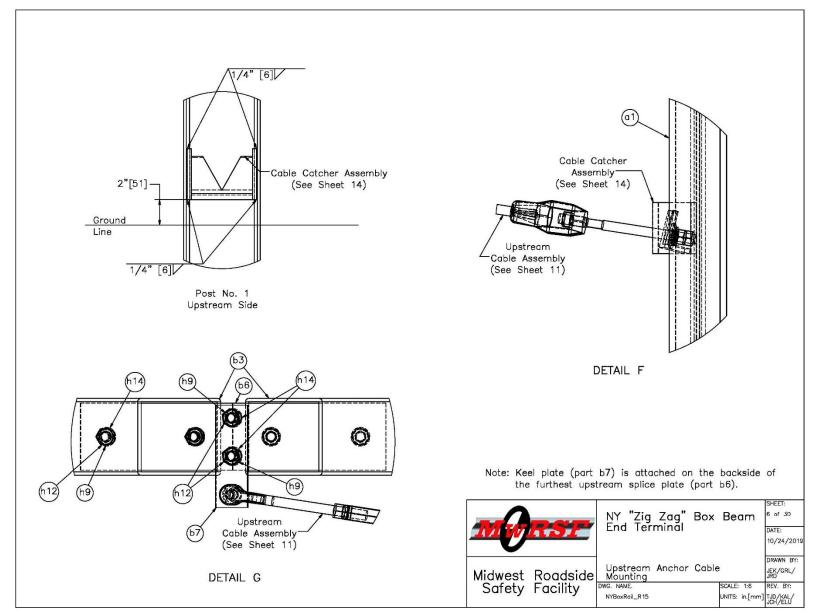


Figure 6. Upstream Anchor Cable Mounting, Test No. NYT-1

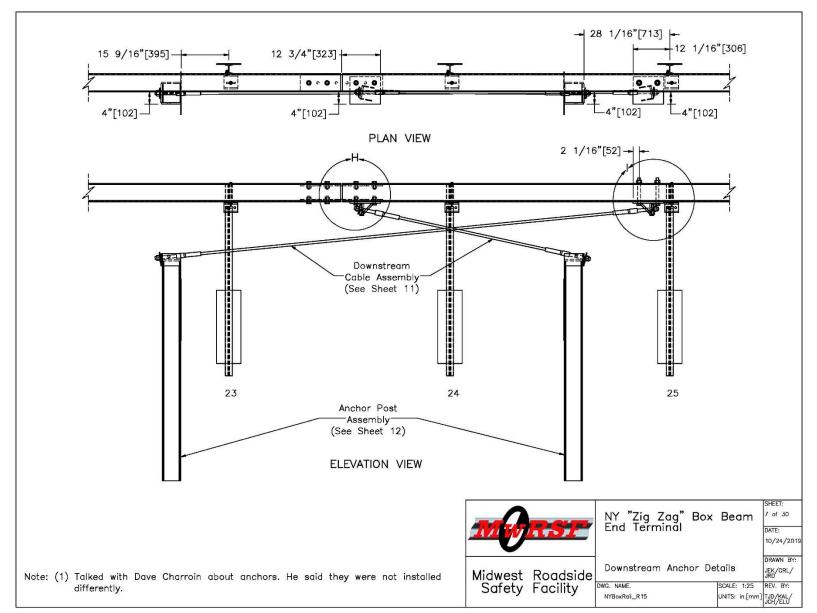


Figure 7. Downstream Anchor Details, Test No. NYT-1

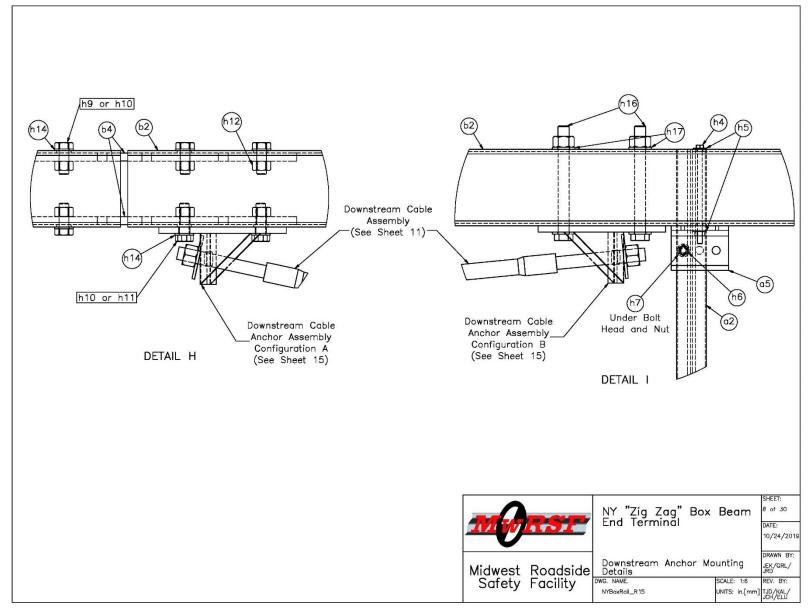


Figure 8. Downstream Anchor Mounting Details, Test No. NYT-1



Figure 9. Post Assembly Details, Test No. NYT-1

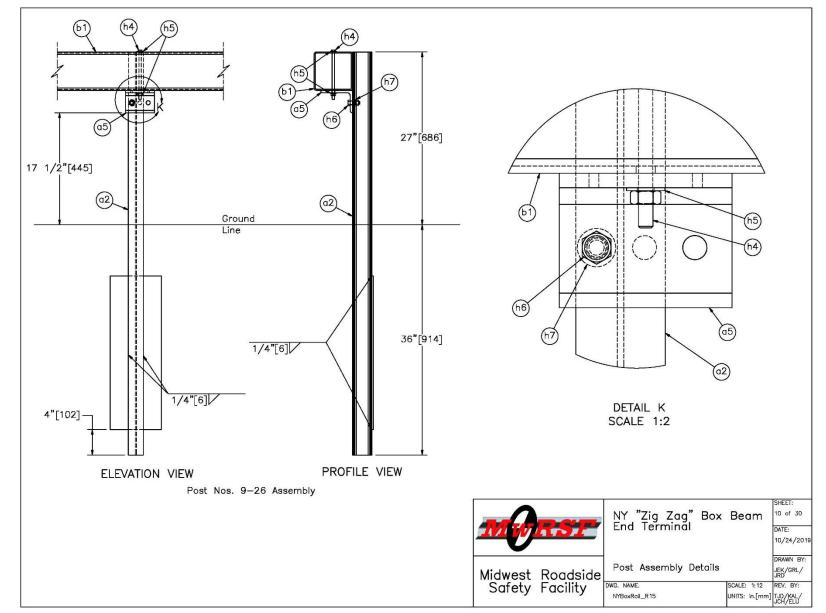


Figure 10. Post Assembly Details, Test No. NYT-1

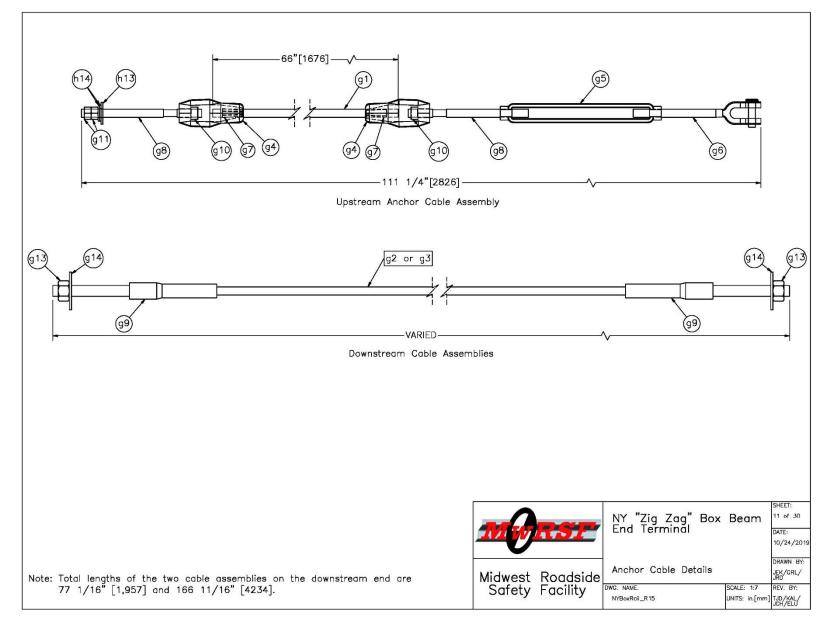


Figure 11. Anchor Cable Details, Test No. NYT-1

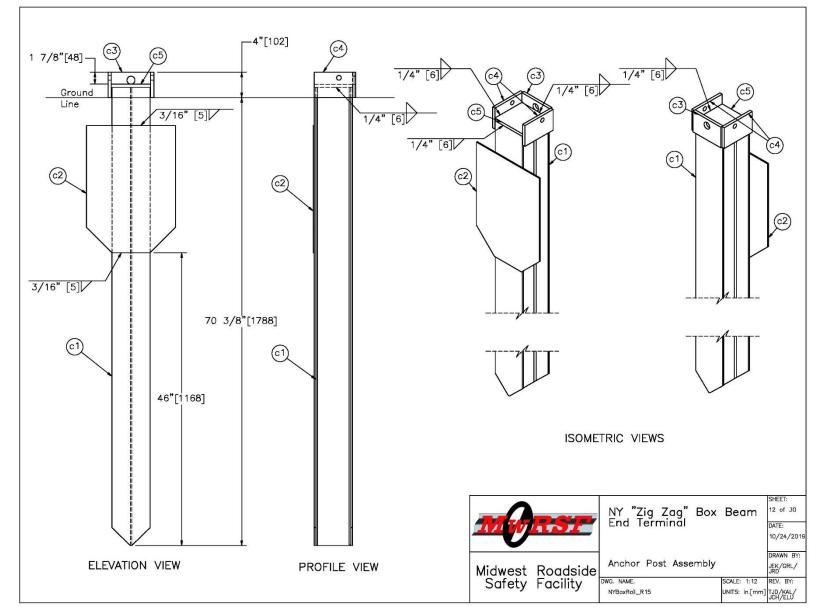


Figure 12. HFT Anchor, Test No. NYT-1

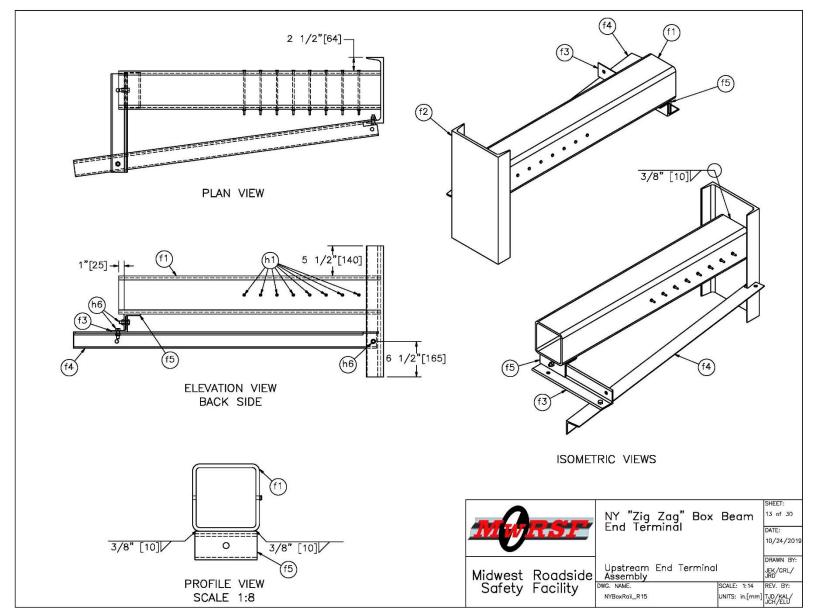


Figure 13. Upstream End Terminal Assembly, Test No. NYT-1

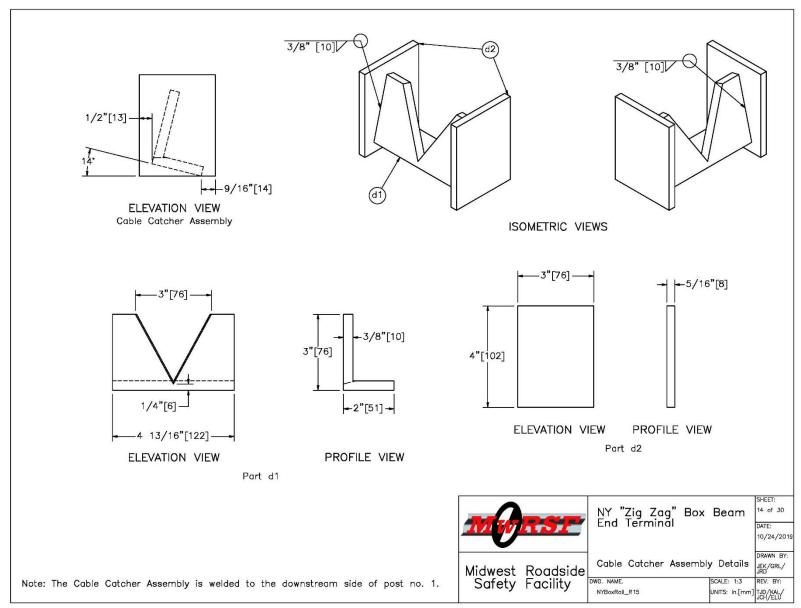


Figure 14. Cable Catcher Assembly Details, Test No. NYT-1

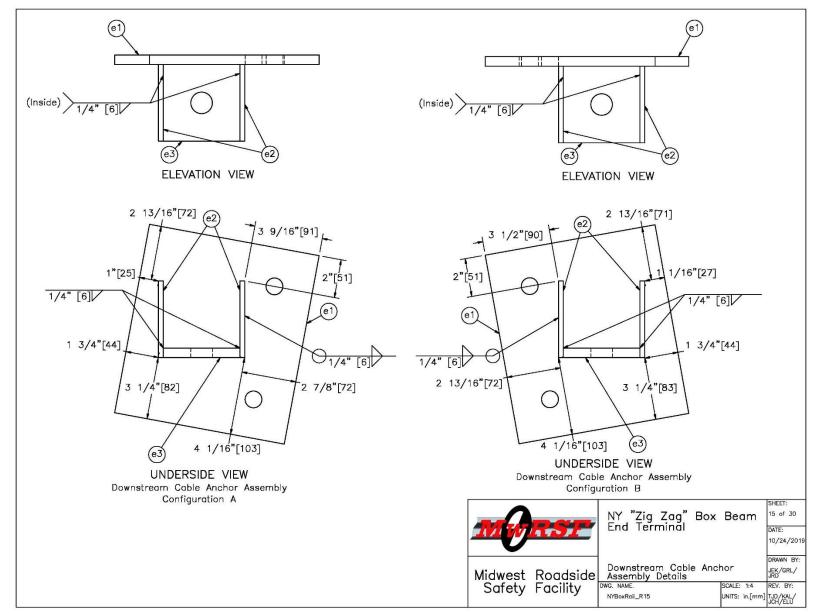


Figure 15. Downstream Cable Anchor Assembly Details, Test No. NYT-1

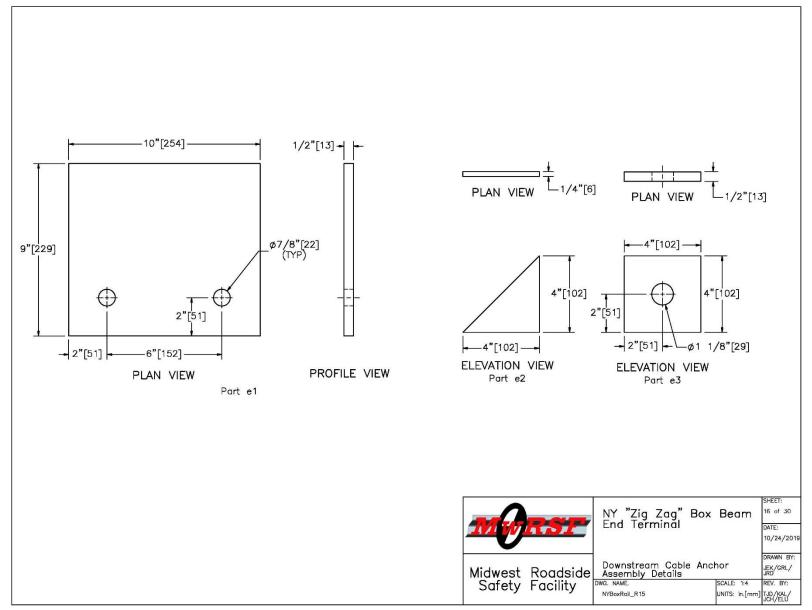


Figure 16. Downstream Cable Anchor Assembly Details, Test No. NYT-1

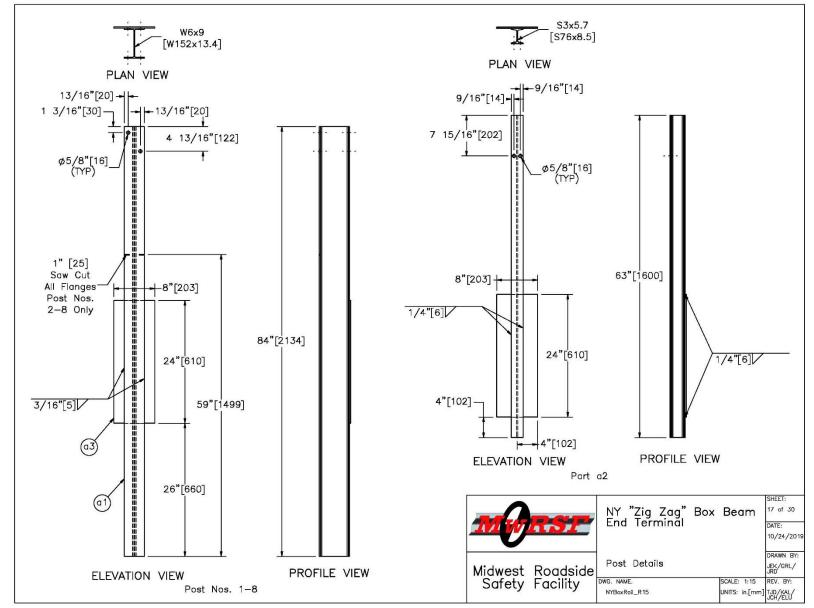


Figure 17. Post Details, Test No. NYT-1

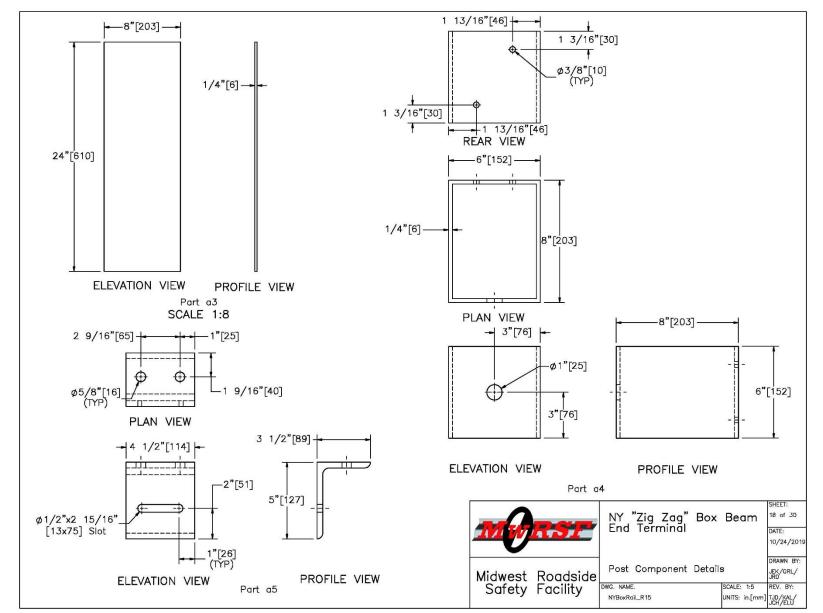


Figure 18. Post Component Details, Test No. NYT-1

December 16, 2020 MwRSF Report No. TRP-03-391-20

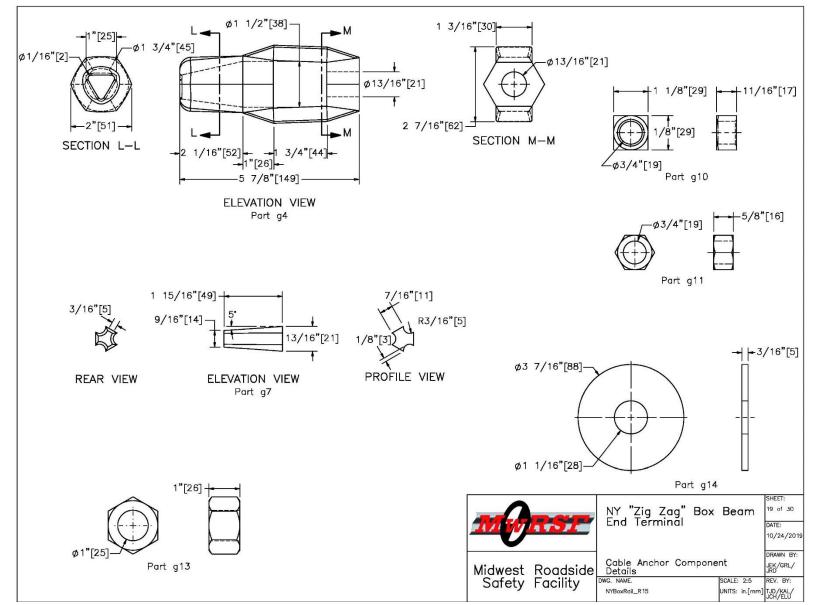


Figure 19. Cable Anchor Component Details, Test No. NYT-1

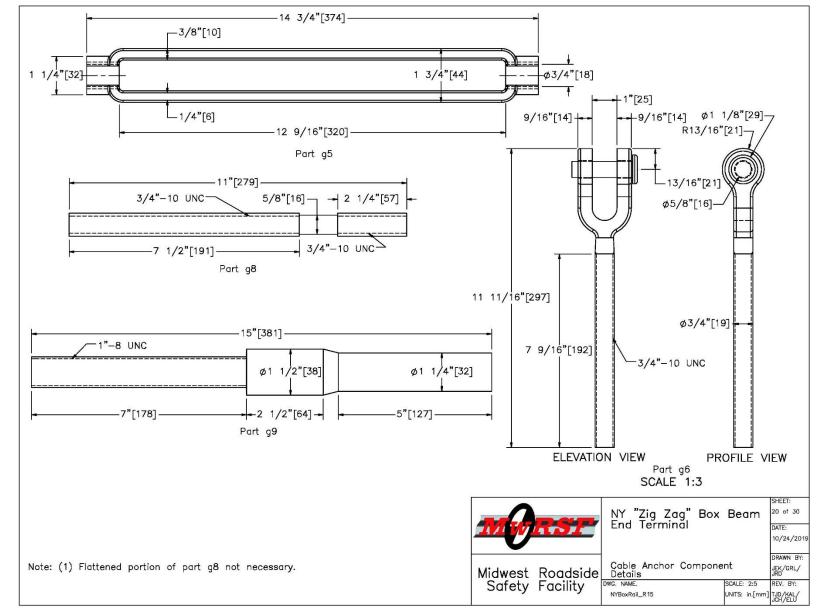


Figure 20. Cable Anchor Component Details, Test No. NYT-1

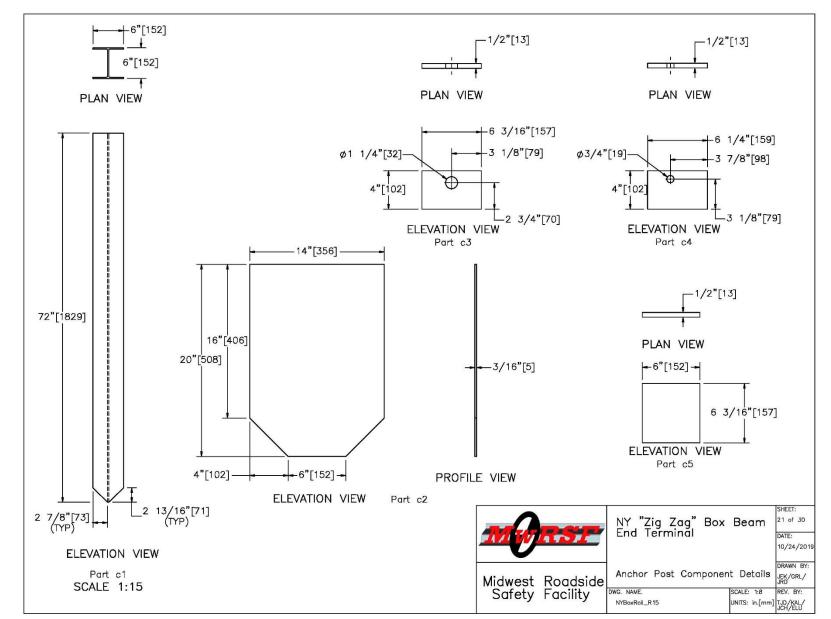


Figure 21. HFT Anchor Component Details, Test No. NYT-1

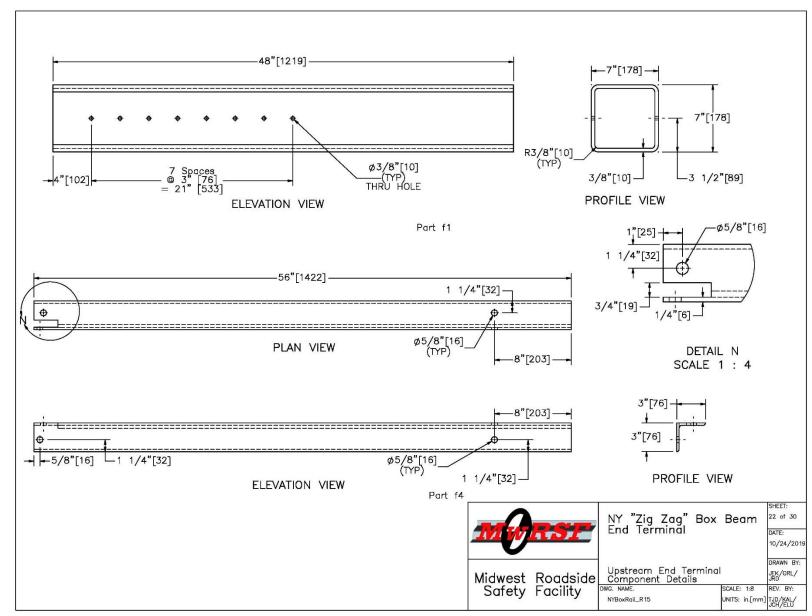


Figure 22. Upstream End Terminal Component Details, Test No. NYT-1

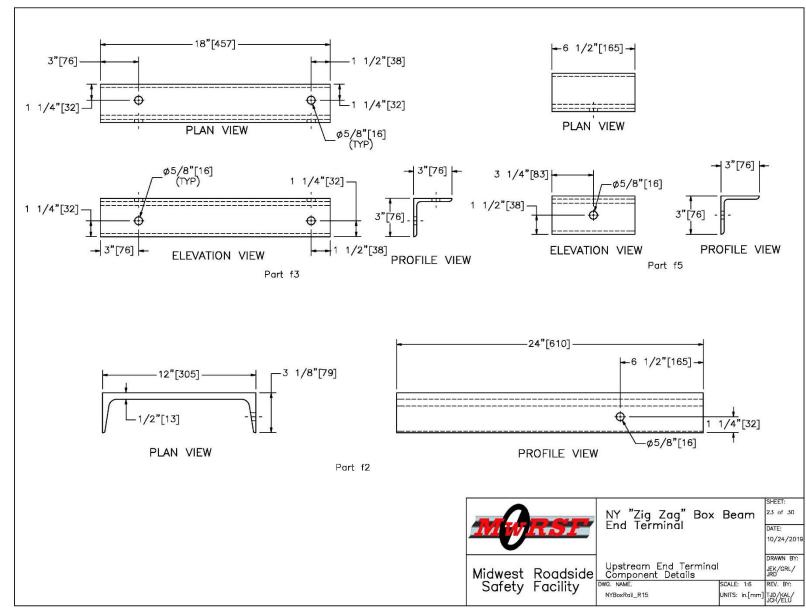


Figure 23. Upstream End Terminal Component Details, Test No. NYT-1

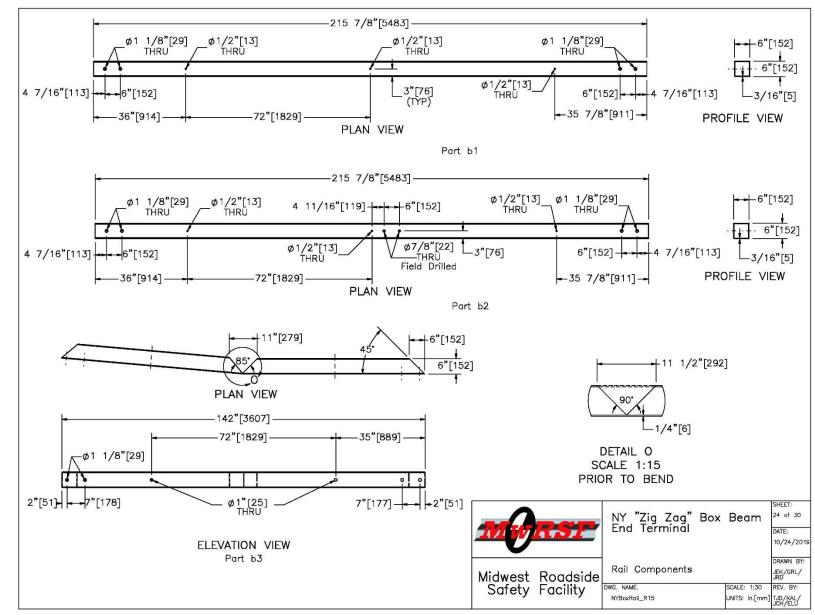


Figure 24. Rail Components, Test No. NYT-1

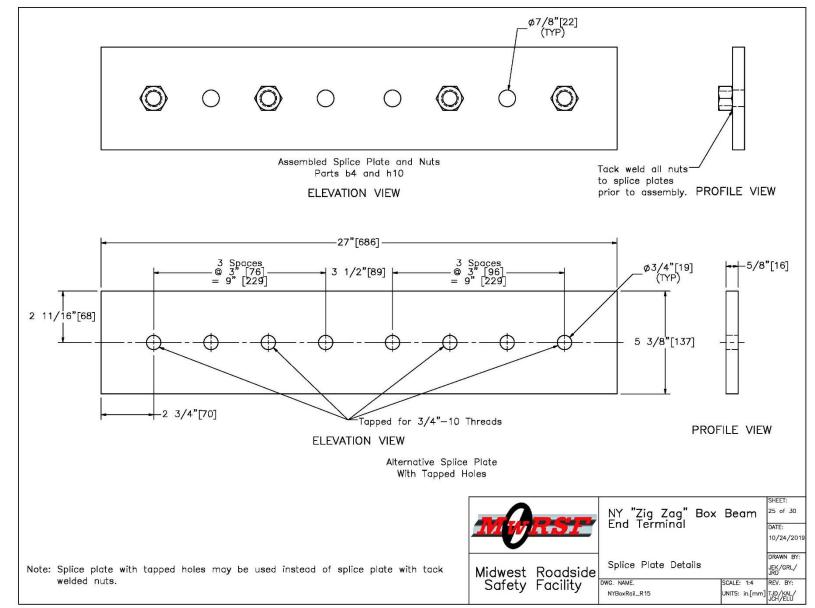


Figure 25. Splice Plate Details, Test No. NYT-1

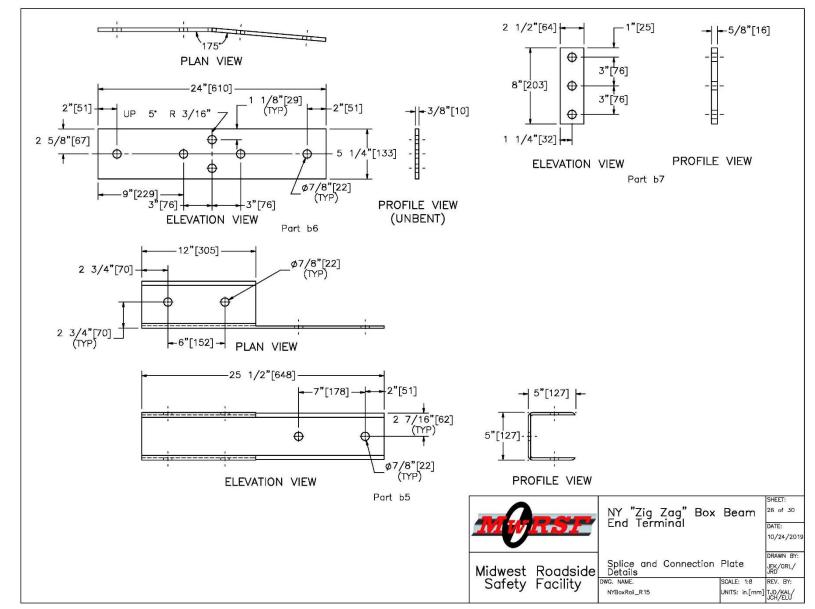


Figure 26. Splice and Connection Plate Details, Test No. NYT-1

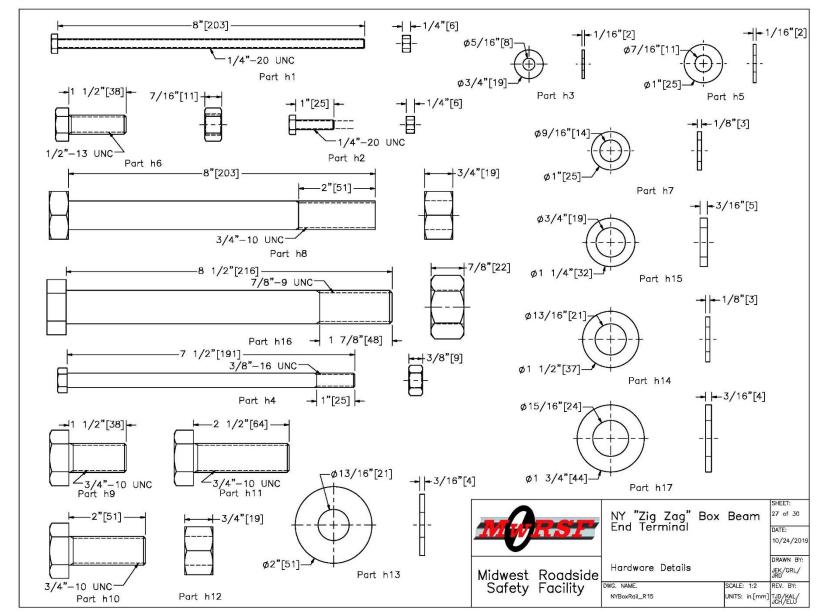


Figure 27. Hardware Details, Test No. NYT-1

a1 B Long I a2 18 S3x5.7 a3 8 24"x8" a4 8 8"x6"x a5 18 5"x3 m b1 5 TS6"x6 b2 1 TS6"x6 b4 10 27"x5 b5 1 TS5"x5 b6 3 24"x5 b7 1 8"x2 m c1 2 W6x15 c2 2 20"x14 c3 2 6	5 [W152x12.6] or W6x9 [W152x13.4], 84" [2,134] Post 7 [S75x8.5], 63" [1,600] Long Post "x1/4" [610x203x6] Soil Plate x1/4" [203x152x6], 6" [152] Long Blockout 1/2"x3/8" [127x89x10], 4 1/2" [114] Long L-Bracket 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x1/4" [152x152x6], 142" [3,607] Long Box Beam, 3/8"x5/8" [686x137x16] Splice Plate 5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate 5 [W152x22.3], 72" [1,829] Long Post	ASTM A992 Min. 50 ksi Steel ASTM A36 ASTM A36 ASTM A500 Gr. B ASTM A36 ASTM A36 ASTM A36	ASTM A123 (AASHTO M111)	PWE07 PSE08 PLS01
a3 8 24"x8" a4 8 8"x6"x a5 18 5"x3 b1 5 TS6"x6 b2 1 TS6"x6 b3 4 TS6"x6 b4 10 27"x5 b5 1 TS5"x5 b6 3 24"x5 b7 1 8"x2 c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1	"x1/4" [610x203x6] Soil Plate x1/4" [203x152x6], 6" [152] Long Blockout 1/2"x3/8" [127x89x10], 4 1/2" [114] Long L-Bracket 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x1/4" [152x152x6], 142" [3,607] Long Box Beam, 3/8"x5/8" [686x137x16] Splice Plate 5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate	ASTM A36 ASTM A500 Gr. B ASTM A36 ASTM A500 Gr. B ASTM A500 Gr. B ASTM A500 Gr. B ASTM A36 ASTM A500 Gr. B ASTM A36	ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111)	PLS01
a4 8 8"x6"x a5 18 5"x3 b1 5 TS6"x6 b2 1 TS6"x6 b3 4 TS6"x6 b4 10 27"x5 b5 1 TS5"x52 b6 3 24"x5 b7 1 8"x2 c1 2 W6x15 c2 2 20"x14 c3 2 6	 x1/4" [203x152x6], 6" [152] Long Blockout 1/2"x3/8" [127x89x10], 4 1/2" [114] Long L-Bracket 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x1/4" [152x152x6], 142" [3,607] Long Box Beam, 3/8"x5/8" [686x137x16] Splice Plate 5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate 	ASTM A500 Gr. B ASTM A36 ASTM A500 Gr. B ASTM A500 Gr. B ASTM A500 Gr. B ASTM A36 ASTM A500 Gr. B ASTM A36	ASTM A123 (AASHTO M111)	
a5 18 5"x3 minimized b1 5 Ts6"x6 Beam b2 1 Ts6"x6 Beam b3 4 Ts6"x6 Beam b4 10 27"x5 b5 1 Ts5"x5 b6 3 24"x5 b7 1 8"x2 minimized c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1	1/2"x3/8" [127x89x10], 4 1/2" [114] Long L-Bracket 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x1/4" [152x152x6], 142" [3,607] Long Box Beam, 3/8"x5/8" [686x137x16] Splice Plate 5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate	ASTM A36 ASTM A500 Gr. B ASTM A500 Gr. B ASTM A500 Gr. B ASTM A36 ASTM A500 Gr. B ASTM A36	ASTM A123 (AASHTO M111)	
b1 5 TS6"x6 Beam b2 1 TS6"x6 Beam b3 4 TS6"x6 Beam b4 10 27"x5 b5 1 TS5"x5 Cut b6 3 24"x5 b7 1 8"x2 for cut c1 2 W6x15 c2 2 20"x14 c3 2 6	6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x1/4" [152x152x6], 142" [3,607] Long Box Beam, 3/8"x5/8" [686x137x16] Splice Plate 5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate	ASTM A500 Gr. B ASTM A500 Gr. B ASTM A500 Gr. B ASTM A36 ASTM A500 Gr. B ASTM A36	ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111)	- - -
b1 D Beam b2 1 TS6"x6 Beam b3 4 TS6"x6 Bean b4 10 27"x5 b5 1 TS5"x5 b6 3 24"x5 b7 1 8"x2 1 c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1	6"x3/16" [152x152x5], 215 7/8" [5,483] Long Box 6"x1/4" [152x152x6], 142" [3,607] Long Box Beam, 3/8"x5/8" [686x137x16] Splice Plate 5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate	ASTM A500 Gr. B ASTM A500 Gr. B ASTM A36 ASTM A500 Gr. B ASTM A36	ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111)	-
b2 I Beam b3 4 TS6"x6 Bent b4 10 27"x5 b5 1 TS5"x5 Cut b6 3 24"x5 b7 1 8"x2 ft c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1	6"x1/4" [152x152x6], 142" [3,607] Long Box Beam, 3/8"x5/8" [686x137x16] Splice Plate 5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate	ASTM A500 Gr. B ASTM A36 ASTM A500 Gr. B ASTM A36	ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111)	-
b3 F Bent b4 10 27"x5 b5 1 TS5"x5 Cut b6 3 24"x5 b7 1 8"x2 c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1	3/8"x5/8" [686x137x16] Splice Plate 5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate	ASTM A36 ASTM A500 Gr. B ASTM A36	ASTM A123 (AASHTO M111) ASTM A123 (AASHTO M111)	-
b5 1 TS5"x5 Cut b6 3 24"x5 b7 1 8"x2 c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1	5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, 1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate	ASTM A500 Gr. B ASTM A36	ASTM A123 (AASHTO M111)	-
b6 3 24"x5 b7 1 8"x2 c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1	1/4"x3/8" [610x133x10] Plate, Bent 1/2"x5/8" [203x64x16] Keel Plate	ASTM A36		-
b7 1 8"x2 c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1	1/2"x5/8" [203x64x16] Keel Plate		ACTH A107 (AACHTO M111)	
c1 2 W6x15 c2 2 20"x14 c3 2 6 3/1		ASTM A36	ASIM AIZS (AASHIU MITT)	
c2 2 20"x14 c3 2 6 3/1	5 [W152x22 3] 72" [1 829] Long Post		ASTM A123 (AASHTO M111)	-
c3 2 6 3/1		ASTM A992 or ASTM A572-50	ASTM A123 (AASHTO M111)	-
c3 2 6 3/1	4"x3/16" [508x356x5] Plate	ASTM A36	ASTM A123 (AASHTO M111)	-
	16"x4"x1/2" [157x102x13] Plate	ASTM A36	ASTM A123 (AASHTO M111)	
c4 4 6 1/4	4"x4"x1/2" [159x102x13] Plate	ASTM A36	ASTM A123 (AASHTO M111)	-
	16"x6"x1/2" [159x152x13] Plate	ASTM A36	ASTM A123 (AASHTO M111)	-
	x3/8" [76x51x10], 4.8" [122] Long L-Bracket	ASTM A36	ASTM A123 (AASHTO M111)	-
d2 2 3"x4"x	x5/16" [76x102x8] Plate	AS⊺M A36	ASTM A123 (AASHTO M111)	-
e1 2 10"x9" Plote	"x1/2" [254x229x13] Box Beam Cable Anchor Base	ASTM A36	ASTM A123 (AASHTO M111)	-
	x1/4" [102x102x6] Box Beam Cable Anchor Gusset	ASTM A36	ASTM A123 (AASHTO M111)	-
Plate	x1/2" [102x102x13] Box Beam Cable Anchor Mounting	ASTM A36	ASTM A123 (AASHTO M111)	
	7"x3/8" [178x178x10], 48" [1,219] Long Box Beam	ASTM A500 Gr. B	ASTM A123 (AASHTO M111)	-
	30, 24" [610] Long C—Channel	ASTM A36	ASTM A123 (AASHTO M111)	-
f3 1 3"x3"x	x1/4" [76x76x6], 18" [457] Long L-Bracket	ASTM A36	ASTM A123 (AASHTO M111)	-
	x1/4" [76x76x6], 56" [1,422] Long L-Bracket	ASTM A36	ASTM A123 (AASHTO M111)	-
f5 1 3"x3"x	x1/4" [76x76x6], 6 1/2" [165] Long L-Bracket	ASTM A36	ASTM A123 (AASHTO M111)	-

Figure 28. Bill of Materials, Test No. NYT-1

SCALE: None REV. BY: UNITS: in.[mm] TJD/KAL/ JCH/ELU

ltem No.	QTY.	Description	Material Spec	Galv Spec	Hardware Guide
g1	1	3/4" [19] Dia. 3x7, 66" [1,676] Long IWRC IPS Wire Rope	ASTM A741 Type 1 (AASHTO M30 Type 1)	Class A Coating	RCM01
g2	1	3/4" [19] Dia. 6x19, 56" [1,422] Long IWRC IPS Wire Rope	ASTM A741 Type 2 (AASHTO M30 Type 2)	Class A Coating	-
g3	1	3/4" [19] Dia. 6x19, 145 3/4" [3,702] Long WRC IPS Wire Rope	ASTM A741 Type 2 (AASHTO M30 Type 2)	Class A Coating	-
g4	2	Cable End Fitting	ASTM A27 (AASHTO M103) Gr. 70-40 Class 1	ASTM A153 or B695 (AASHTO M232 or M298)	RCE03
g5	5 1 Crosby Threaded Turnbuckle		C1030/C1035 ASTM F1145	ASTM A153	-
g6	1	3/4" [19] Dia. UNJ, Crosby HG 4037 Jaw	ASTM F1145	As Supplied	-
g7	2	Cable Wedge	ASTM A47 Gr. 32510	-	FMM01
g8	2	3/4" [19] Dia. UNC, 11" [279] Long Threaded Rod	ASTM A307 Gr. A or SAE Gr. 2	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	RCE03
g9	4	BCT Anchor Cable End Swaged Fitting	Grade 5	Fitting – ASTM A153 (AASHTO M232), Stud – ASTM A153 or B695 (AASHTO M232 or M298)	-
g10	2	3/4" [19] Dia. UNC Square Nut	ASTM A563A	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FNS20
g11	2	3/4" [19] Dia. UNC Hex Nut	ASTM A563A	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FNX20a
g13	4	1" [25] Dia. UNC Heavy Hex Nut	ASTM A563DH	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FNX24b
g14	4	1" [25] Dia. Plain Round Washer	ASTM F844	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FWC24a
h1	8	1/4" [6] Dia. UNC, 8" [203] Long Fully Threaded Hex Head Shear Bolt and Nut	Bolt – ASTM A307 Gr. A or SAE Gr. 2 Nut – ASTM A563A	Both - ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	-
h2	16	1/4" [6] Dia. UNC, 1" [25] Long Fully Threaded Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or SAE Gr. 2 Nut – ASTM A563A	Both – ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FBX06a
h3	32	1/4" [6] Flat Washer	ASTM F844	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FWC06a
h4	18	3/8" [10] Dia. UNC, 7 1/2" [191] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or SAE Gr. 2 Nut – ASTM A563A	Both — ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FBX10a
h5	36	3/8" [10] Dia. Plain Round Washer	ASTM F844	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FWC10a
h6	21	1/2" [13] Dia. UNC, 1 1/2" [38] Long Fully Threaded Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or SAE Gr. 2 Nut – ASTM A563A	Both – ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FBX14b
h7	18	1/2" [13] Dia. Plain Narrow Round Washer	SAE Low Carbon Gr. 2	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	-
				NY "Zig Zag" Box Bea End Terminal	DATE: 10/24/2019
			1	Midwest Roadside Safety Facility	DRAWN BY: JEK/GRL/ JRD Jone REV. BY:
					I.[mm] TJD/KAL/ JCH/ELU

Figure 29. Bill of Materials, Test No. NYT-1

ltem No.	QTY.	Description	Material Spec	Galv Spec	Hardwar Guide
h8	8	3/4" [19] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or SAE Gr. 2 Nut – ASTM A563A	Both — ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FBX20d
h 9*	20	3/4" [19] Dia. UNC, 1 1/2" [38] Long Fully Threaded Heavy Hex Head Bolt	Bolt - ASTM F3125 Gr. A325 or ASTM A449 or SAE J429 Gr. 5 Nut - ASTM A563DH or ASTM A194 Gr. 2H	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	-
10*	38	3/4" [19] Dia. UNC, 2" [51] Long Fully Threaded Heavy Hex Head Bolt	Bolt – ASTM F3125 Gr. A325 or ASTM A449 or SAE J429 Gr. 5 Nut – ASTM A563DH or ASTM A194 Gr. 2H	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FBX20t
11*	2	3/4" [19] Dia. UNC, 2 1/2" [64] Long Fully Threaded Heavy Hex Head Bolt	Bolt – ASTM F3125 Gr. A325 or ASTM A449 or SAE J429 Gr. 5 Nut – ASTM A563DH or ASTM A194 Gr. 2H	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FBX20
12**	60	3/4" [19] Dia. UNC Heavy Hex Nut	ASTM A563DH	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FNX20
h13	17	3/4" [19] Dia. Plain Round Washer	ASTM F844	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FWC20
h14	62	3/4" [19] Dia. Hardened Flat Washer	ASTM F436	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FWC20
h15	8	3/4" [19] Dia. Lock Washer	Steel	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	_
h16	2	7/8" [22] Dia. UNC, 8 1/2" [216] Long Heavy Hex Head Bolt and Nut	Bolt - ASTM F3125 Gr. A325 or ASTM A449 or SAE J429 Gr. 5 Nut - ASTM A563DH or ASTM A194 Gr. 2H	Both — ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	-
h17	4	7/8" [22] Hardened Flat Washer	ASTM F436	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FWC22
	require using t	ed. the splice plates with tapped holes instead of tac	k welded nuts, only 20 of po	rt h12 will be required.	
W	asher	Washer SeriesInside DiameterOutside DiameterBasicTolerance PlusBasicTolerance PlusBasicRegular (h14)0.812"0.03"0.007"1.469"0.03"0.007"0	Thickness Basic Max. Min.	NY "Zig Zag" Box Bear End Terminal	SHEET: 30 of DATE: 10/24/

Figure 30. Bill of Materials, Test No. NYT-1

SCALE: None REV. BY: UNITS: in.[mm] TJD/KAL/ JCH/ELU

Figure 31. Test Installation, Test No. NYT-1

Figure 32. Test Installation-End Terminal, Test No. NYT-1

Figure 33. Test Installation Post and Rail Details for Post Nos. 1 through 8, Test No. NYT-1

Figure 34. Test Installation Post and Rail Details for Post Nos. 9 through 26, Test No. NYT-1

Figure 35. Test Installation, Splice Details, Test No. NYT-1

Figure 36. Test Installation, Splice Details; Test No. NYT-1

Figure 37. Test Installation, Upstream Anchor Details, Test No. NYT-1

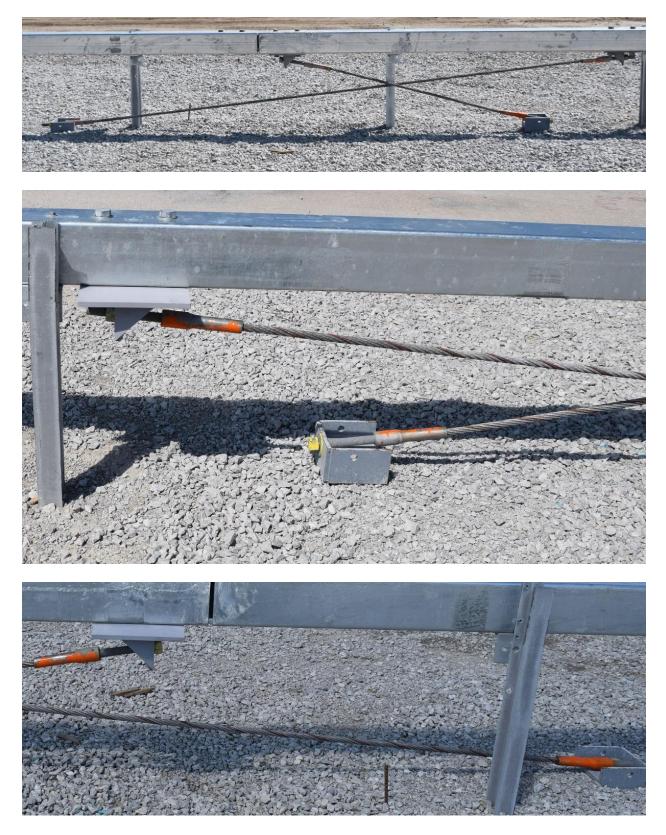


Figure 38. Test Installation, Upstream Anchor Details, Test No. NYT-1

4 TEST CONDITIONS

4.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [3] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. NYT-1, a 2011 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,071 lb (2,300 kg), 5,000 lb (2,268 kg), and 5,158 lb (2,340 kg), respectively. The test vehicle is shown in Figures 39 and 40, and vehicle dimensions are shown in Figure 41. Pre-test photographs of the vehicle's undercarriage were unavailable.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [4] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 41 and 42. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 42. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

Figure 39. Test Vehicle, Test No. NYT-1



Figure 40. Test Vehicle Interior Floorboards, Test No. NYT-1

Date:	5/16/2017	Test Name:	NYT-1	VIN No: 1D7RB1GP3BS553913
Year:	2011	Make:	Dodge	Model:Ram 1500
Tire Size:	P265/70R17 113R	Tire Inflation Pressure:	40 Psi	Odometer: 217959
				Vehicle Geometry - in. (mm) Target Ranges listed below
t Wheel Track		,∞	 m Wheel a Track	a: 78 3/8 (1991) b: 73 3/8 (1864) 78±2 (1950±50) c: 229 1/2 (5829) d: 49 3/8 (1254)
				237±13 (6020±325)
Te	st Inertial C.M.—{	/		e: <u>140 1/4 (3562)</u> f: <u>38 3/4 (984)</u> <u>148±12 (3760±300)</u> f: <u>39±3 (1000±75)</u>
		\ q -+-	-TIRE DIA	g: 28 (711) h: 61 9/16 (1564) min: 28 (710) h: 61 9/16 (1564) 63±4 (1575±100)
1	(i: 7 (178) j: 23 3/4 (603)
ю (k: <u>19 1/4 (489)</u> I: <u>28 3/4 (730)</u>
				m: <u>66 1/2 (1689)</u> n: <u>67 3/4 (1721)</u> 67±1.5 (1700±38) 67±1.5 (1700±38)
		h	t.	o: <u>45 3/4 (1162)</u> p: <u>4 5/8 (117)</u> 43±4 (1100±75)
-	d	e f-	-	q: <u>31 3/4 (806)</u> r: <u>18 1/2 (470)</u>
-	V "rear	c	-	s: <u>14 3/4 (375)</u> t: <u>77 5/8 (1972)</u>
Mass Distribu	tion lb (kg)			Wheel Center Height (Front): <u>14 1/2 (368)</u>
Gross Static	LF <u>1400</u> (635)	RF1505 (683)		Wheel Center Height (Rear): 15 (381)
	LR <u>1119 (508)</u>			Wheel Well Clearance (Front): <u>34 7/8 (886)</u>
				Wheel Well Clearance (Rear): 37 3/8 (949)
Weights Ib (kg)	Curb	Test Inertial	Gross Static	Bottom Frame Height (Front): <u>13 1/4 (337)</u>
W-front	2869 (1301) 2805 (1272)	2905 (1318)	Bottom Frame Height (Rear): 24 3/4 (629)
W-rear	2202 (999)	2195 (996)	2253 (1022)	Engine Type: Gasoline
W-total	5071 (2300) 5000 (2268) 5000±110 (2270±50)	5158 (2340) 5165±110 (2343±50)	Engine Size: 4.7L V8
			00000000000 . 000000000	Transmission Type: <u>Automatic</u>
GVWR Rating	s Ib	Dummy Data		Drive Type: RWD
Front _	3700	Туре:	Hybrid II	Cab Style: Quad Cab
Rear _	3900	Mass:	158 lb	Bed Length:76''
Total _	6900	Seat Position:	Passenger	
Note any damage prior to test:				

Figure 41. Vehicle Dimensions, Test No. NYT-1

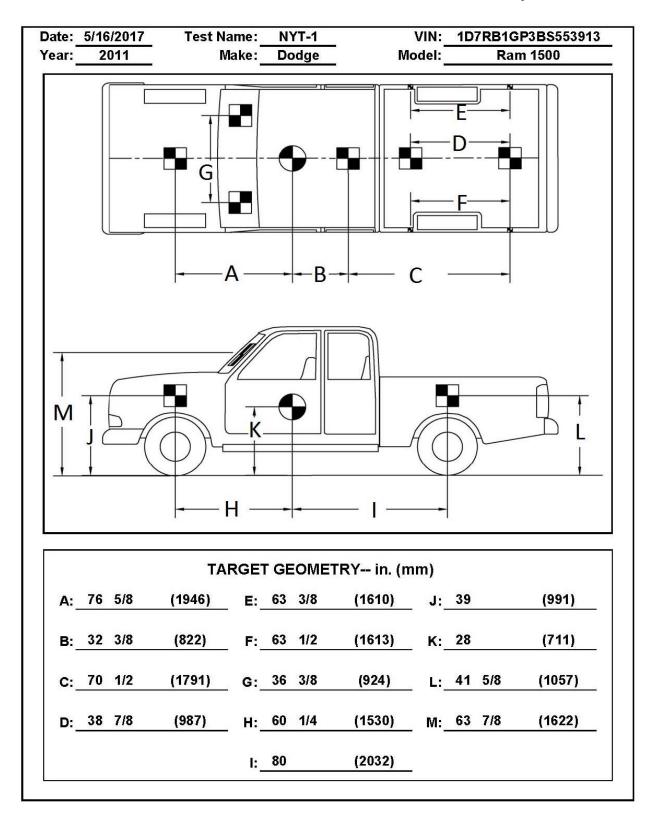


Figure 42. Target Geometry, Test No. NYT-1

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the left windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

4.4 Simulated Occupant

For test no. NYT-1, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The simulated occupant had a final weight of 158 lb (72 kg). As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [5].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals,

were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras and eleven GoPro digital video cameras were utilized to film test no. NYT-1. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 43.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for the test.

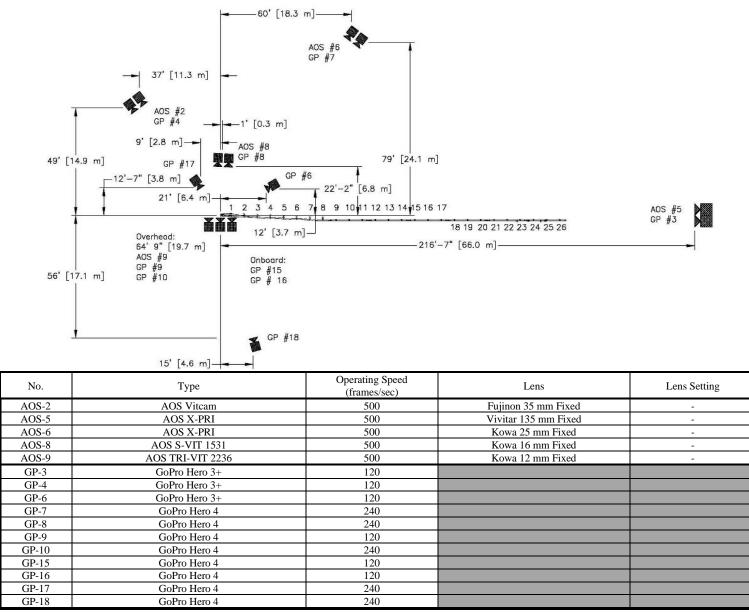


Figure 43. Camera Locations, Speeds, and Lens Settings, Test No. NYT-1

5 FULL-SCALE CRASH TEST NO. NYT-1

5.1 Static Soil Test

Before full-scale crash test no. NYT-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. NYT-1 was conducted on May 16, 2017 at approximately 3:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	90° F
Humidity	44%
Wind Speed	18 mph
Wind Direction	190° from True North
Sky Conditions	Partly Cloudy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.01 in.
Previous 7-Day Precipitation	0.39 in.

Table 3. Weather Conditions, Test No. NYT-1

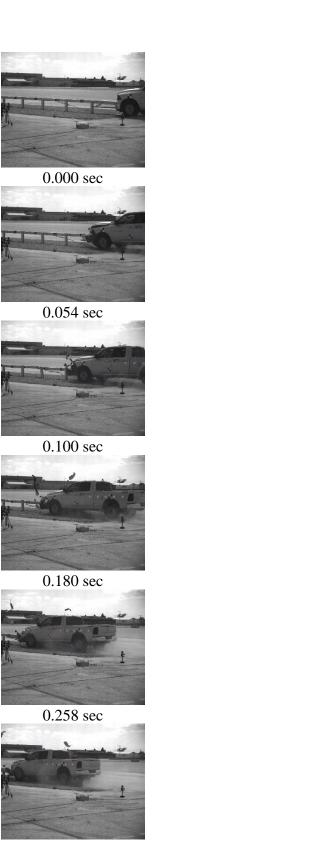
5.3 Test Description

Initial vehicle impact was to occur at the upstream face of the terminal, as shown in Figure 44, which was selected using Table 2-3 of MASH 2016. The 5,000-lb (2,268-kg) quad cab pickup truck impacted the New York zig-zag box-beam terminal at a speed of 62.7 mph (101 km/h) and at an angle of 0.1 degrees. The actual point of impact was on the upstream end of the terminal. The vehicle came to rest 80 ft - 3 in. (24.5 m) downstream from the impact point and 6 in. (152 mm) from the back of the system, facing the system.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 46 and 47. Documentary photographs of the crash test are shown in Figure 48 and Figure 49. The vehicle trajectory and final position are shown in Figure 50.

Figure 44. Impact Location, Test No. NYT-1

TIME (sec)	EVENT			
0.000	Vehicle's front bumper impacted end terminal head.			
0.002	Vehicle's front bumper deformed. Vehicle's grille contacted end terminal head.			
0.004	Vehicle's grille deformed.			
0.006	End terminal head assembly deflected downstream.			
0.012	Vehicle's right headlight deformed.			
0.014	End terminal caused post no. 1 to deflect downstream.			
0.016	Blockout no. 1 disengaged from post no. 1.			
0.018	Vehicle's hood deformed.			
0.022	Post no. 1 bent downstream.			
0.024	Vehicle's left fender deformed.			
0.026	Vehicle pitched downward.			
0.028	Blockout no. 1 disengaged from rail at post no. 1. Vehicle's left headlight deformed.			
0.044	Rail bent between post nos. 1 and 2. Rail section no. 1 deflected downstream.			
0.046	Vehicle's right fender deformed. Rail bent between post nos. 2 and 3. Rail section no. 2 deflected downstream.			
0.048	Post no. 2 rotated counterclockwise. Vehicle yawed toward barrier.			
0.050	Anchor cable disengaged from post no. 1. Rail bent between post nos. 3 and 4.			
0.052	Post no. 2 deflected downstream. Post no. 3 rotated counterclockwise. Rail bent between post nos. 4 and 5. Rail section no. 3 deflected downstream.			
0.054	Post no. 3 deflected downstream. Rail bent between post nos. 5 and 6.			
0.056	Post nos 4 and 5 deflected downstream Rail bent between post nos 6 and 7 Ra			
0.058	section no. 4 deflected downstream.Blockout no. 4 disengaged from post no. 4. Blockout no. 2 disengaged from postno. 2. Rail bent between post nos. 7 and 8.			
0.060	Post no. 7 deflected downstream.			
0.062	Blockout no. 6 disengaged from post no. 6.			
0.064	Blockout no. 3 disengaged from post no. 3.			
0.068	Blockout no. 5 disengaged from post no. 5.			
0.072	Blockout no. 8 disengaged from post no. 8.			
0.090	Rail section no. 2 contacted post no. 3.			
0.098	Vehicle overrode post no. 1.			
0.100	Post no. 3 bent downstream.			
0.130	Vehicle front bumper contacted post no. 2.			
0.138	Post no. 2 bent downstream. Rail section no. 3 rotated counterclockwise.			
0.158	Vehicle yawed away from barrier.			
0.180	Vehicle overrode post no. 2.			
0.200	Post no. 4 bent downstream. Vehicle's right headlight disengaged. Rail section no. 2 contacted post no. 4.			
0.236	Rail section no. 3 deflected downstream.			


Table 4. Sequential Description of Impact Events, Test No. NYT-1

TIME (sec)	EVENT		
0.238	Rail section no. 2 tore at notch.		
0.258	Vehicle overrode post no. 3.		
0.298	Vehicle pitched upward.		
0.300	Rail section no. 2 contacted post no. 5. Post no. 5 bent downstream.		
0.326	Vehicle overrode post no. 4.		
0.372	Rail section no. 2 contacted post no. 6.		
0.376	Post no. 6 bent downstream.		
0.414	Vehicle overrode post no. 5.		
0.422	Upstream end of rail section no. 2 contacted downstream end of rail section no. 3.		
0.426	Vehicle's front bumper contacted rail section no. 4.		
0.454	Blockout no. 3 contacted post no. 7.		
0.458	Blockout no. 7 disengaged from post no. 7.		
0.464	Post no. 7 bent downstream.		
0.474	Rail section no. 2 contacted post no. 7.		
0.486	Rail section no. 4 rotated counterclockwise.		
0.502	Vehicle overrode post no. 6.		
0.536	Vehicle's grille contacted blockout no. 7. Rail bent between post nos. 8 and 9.		
0.542	Vehicle's right-front tire contacted rail section no. 4.		
0.550	Vehicle pitched downward.		
0.554	Rail section no. 2 contacted post no. 8.		
0.556	Vehicle's right fender contacted rail section no. 4.		
0.560	Post no. 8 bent downstream.		
0.566	Vehicle rolled away from barrier.		
0.586	Vehicle overrode post no. 7.		
0.658	Vehicle's front bumper contacted tangent rail.		
0.660	Vehicle's grille contacted tangent rail.		
0.662	Vehicle's right fender contacted tangent rail.		
0.690	Vehicle overrode post no. 8.		
0.764	Vehicle's right-side mirror deformed.		
0.766	Vehicle's right A-pillar and windshield deformed.		
0.782	Vehicle's right-front door deformed.		
0.786	Vehicle's roof deformed.		
0.788	Vehicle's right-front window shattered due to contact with structural member of system.		
0.796	Vehicle's windshield separated from right A-pillar.		
0.916	Vehicle's grille disengaged.		
1.038	Vehicle pitched upward.		
1.064	Vehicle rolled toward barrier.		
1.512	Vehicle rolled away from barrier.		

Table 5. Sequential Description of Impact Events, Test No. NYT-1, Cont.

Figure 45. Vehicle Final Position and Trajectory Marks, Test No. NYT-1

0.300 sec

0.000 sec

0.474 sec

1.038 sec

1.512 sec

2.166 sec

2.866 sec

Figure 46. Sequential Photographs, Test No. NYT-1

0.000 sec

0.130 sec

0.302 sec

0.464 sec

0.788 sec

0.000 sec

0.050 sec

0.100 sec

0.138 sec

0.180 sec

0.258 sec

Figure 47. Additional Sequential Photographs, Test No. NYT-1

Figure 48. Documentary Photographs, Test No. NYT-1

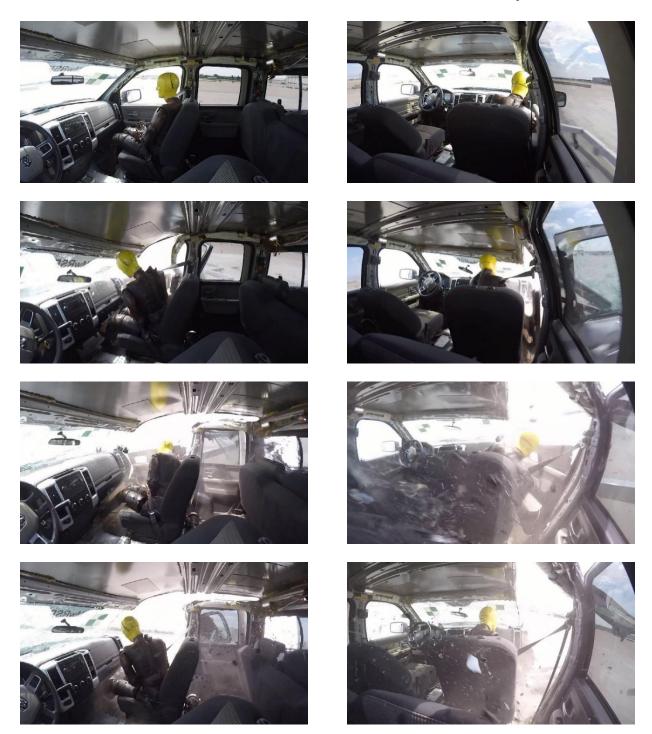


Figure 49. Additional Documentary Photographs, Test No. NYT-1

5.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 50 through 57. Barrier damage consisted of contact marks on the impact head and box beam, vertical tears at the V-shaped sections, deformations to the box beam, and deflection of the posts. The length of vehicle contact along the barrier was approximately 80 ft – 3 in. (24.5 m) beginning at the front of the impact head.

Contact marks found on the front of the impact head measured 35 in. (889 mm), 24 in. (610 mm), and 23 in. (584 mm). An 8-in. high by 3-in. wide (203-mm by 76-mm) contact mark was found at the bottom of the back face of the impact head. A 2½-in. (64-mm) dent was visible on the front face of the impact head box beam. A 4½-in. (114-mm) bend was located at the downstream corner of the vertical plate, which bent ¾ in. (19 mm) backward. Dents were found on the V-shaped section on the rail between post nos. 6 and 7. A 7-in. (178 mm) tear was found on the V-shaped section on the rail between post nos. 6 and 7. Smaller contact marks, bends, tears, and dents were located on the impact head, V-shaped sections, and box beam.

The splice plate on the rail between post nos. 4 and 5 was bent 90 degrees at the splice center. The splice plate connecting rail sections between post nos. 8 and 9 was bent 90 degrees at the splice center. The splice plate on the rail between post nos. 6 and 7 was bent 20 degrees upstream from the splice center, and it was also bent 90 degrees at the splice plate centerline. The splice plate on the rail between post nos. 8 and 9 was bent 90 degrees at the splice plate centerline.

Soil heaves formed at the bases of post nos. 7, 9, and 11 through 13, and soil craters were found at the bases of post nos. 8 through 10, 13, and 15. Post nos. 1 through 13 were bent downstream at the ground line. For post nos. 1 through 8, four 1-in (25-mm) tears were found at the saw cuts, two on the upstream flange and two on the downstream flange. Dents, gouges, and contact marks were found on post nos. 1 through 14. The box beam disengaged from post nos. 12 and 13. All blockouts from post nos. 2 through 8 disconnected from their respective posts but stayed connected to the box beam. The blockout from post no. 1 disengaged from both the post and the box beam, and was displaced 32 ft – 6 in. (9,906 mm) laterally behind and 152 ft – 7 in. (46,507) downstream from its original position. The blockouts from post nos. 3, 4, and 7 were deformed. The rail-to-post L-brackets remained attached to post nos. 12 through 26. The L-bracket of post no. 14 rotated, but the L-bracket remained intact and fastened to both the post and the box beam rail. The L-brackets from post nos. 11 through 13 disengaged from the box beam but stayed attached to their respective posts. The L-brackets from post nos. 9 and 10 disengaged from both the box beam and their respective posts. The remaining posts, nos. 15 through 26, appeared to be undamaged.

The maximum lateral permanent set of the barrier system was 266 in. (6,756 mm) which occurred at the rail initially attached to post no. 4, as measured in the field. The maximum lateral dynamic barrier deflection was 326.7 in. (8,299 mm) which occurred at the rail initially attached to post no. 4, as determined from high-speed digital video analysis.

Figure 50. System Damage Overview, Test No. NYT-1

Figure 51. End Terminal Damage, Test No. NYT-1

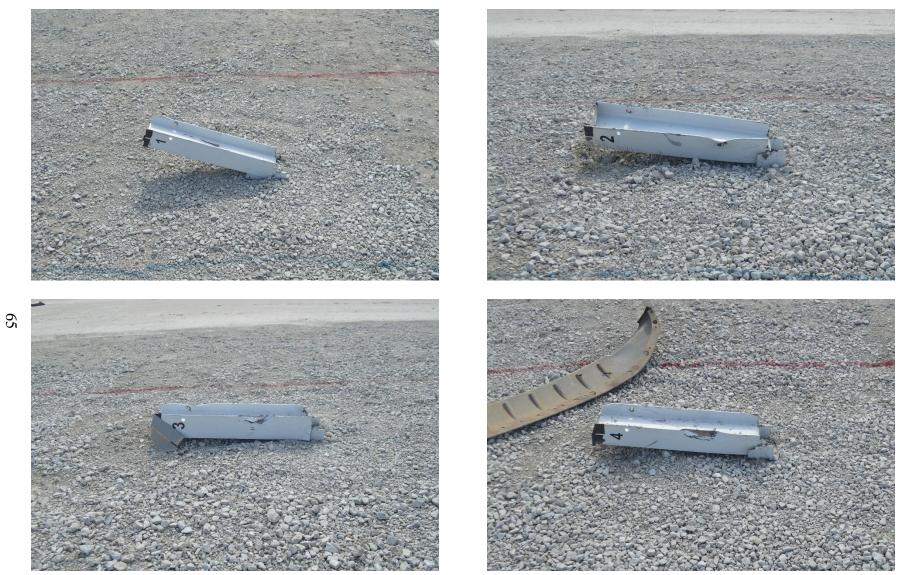


Figure 52. System Damage, Post Nos. 1 through 4, Test No. NYT-1

Figure 53. System Damage, Post Nos. 5 through 8, Test No. NYT-1

Figure 54. System Damage, Post Nos. 9 through 11, Test No. NYT-1

Figure 55. Rail Damage, Test No. NYT-1

Figure 56. Additional Rail Damage, Test No. NYT-1

Splice 2-3

Splice 4-5

Splice 8-9

Figure 57. Splice Damage, Test No. NYT-1

December 16, 2020 MwRSF Report No. TRP-03-391-20

5.5 Vehicle Damage

The damage to the vehicle was extensive, as shown in Figures 58 through 62. The maximum occupant compartment intrusions are listed in Table 6 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. Note that the side window shattered as a result of contact with a structural member of the system, and thus violated the deformation limits established in MASH 2016. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

Majority of the damage was concentrated on the right-front corner and right side of the vehicle, where 'right' is determined from the rear of the vehicle. The front bumper, headlights, radiator, and grille disengaged from the vehicle. The right-front fender and right-front door were separated from the vehicle's frame, consequently shattering the right-front side window. The right-front wheel assembly deformed and counterclockwise, and the tire tore. Denting and scraping were observed along the vehicle's entire right side. The entire windshield fractured and the top-right corner of the windshield tore from the roof where it was attached. The roof bent downward and buckled.

The vehicle anti-roll bar was dented near the middle-rear. The right-side steering knuckle disengaged from the vehicle. The right-side upper-control arm was severely bent, and the ball joint deflected approximately 3 in. (76 mm) toward the rear of the vehicle. The right-front mounting bracket and lower control arm bent backward. The right-side inner tire rod disengaged. The left-side suspension appeared undamaged. The left-side frame horn bent backward toward the left-side doors, and the right-side frame horn bent inward toward the left side. The first left-side cab mount disengaged from the vehicle while the second left-side cab mount bent inward. The left-front brake line was fractured at the caliper.

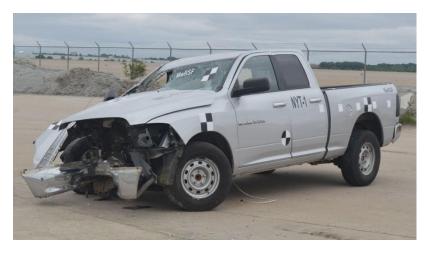


Figure 58. Vehicle Damage, Test No. NYT-1

Figure 59. Additional Vehicle Damage, Test No. NYT-1

Figure 60. Vehicle Windshield Damage, Test No. NYT-1

Figure 61. Occupant Compartment Damage, Test No. NYT-1

December 16, 2020 MwRSF Report No. TRP-03-391-20

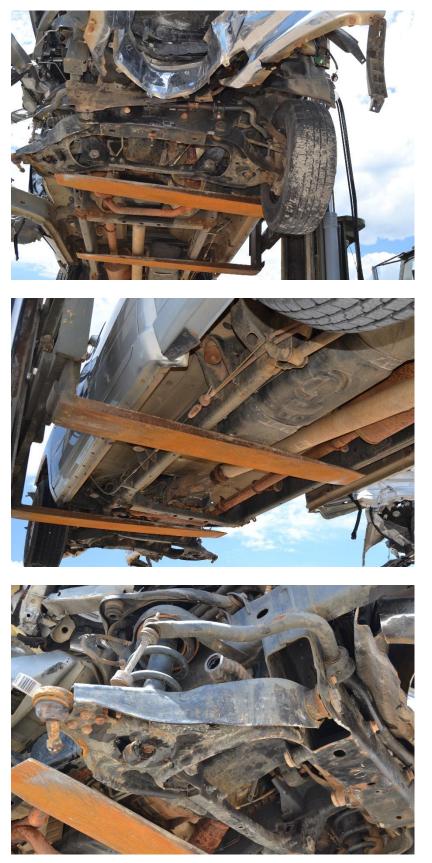


Figure 62. Vehicle Undercarriage Damage, Test No. NYT-1

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)		
Wheel Well & Toe Pan	11/8 (29)	≤9 (229)		
Floor Pan & Transmission Tunnel	3 (76)	≤ 12 (305)		
A-Pillar	1¾ (35)	≤ 5 (127)		
A-Pillar (Lateral)	11/8 (29)	≤ 3 (76)		
B-Pillar	15/8 (41)	≤ 5 (127)		
B-Pillar (Lateral)	1¾ (35)	<i>≤</i> 3 (76)		
Side Front Panel (in Front of A-Pillar)	11/8 (29)	≤ 12 (305)		
Side Door (Above Seat)	1 (25)	≤9 (229)		
Side Door (Below Seat)	5% (16)	≤ 12 (305)		
Roof	4 (102)	≤4 (102)		
Windshield	N/A ²	≤3 (76)		
Side Window	Right-front window shattered due to vehicle contact with a structural member	No shattering resulting from contact with structural member of test article		
Dash	3¾ (86)	N/A ¹		

Table 6. Maximum Occupant Compartment Intrusions by Location

 N/A^1 – No MASH criteria exists for this location N/A^2 – No data available

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 7. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 7. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 63. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

			Transducer				
Evaluati	on Criteria	SLICE-1	SLICE-2 (primary)	MASH 2016 Limits			
OIV	Longitudinal	-13.45 (-4.10)	-13.50 (-4.11)	±40 (12.2)			
ft/s (m/s)	Lateral	5.16 (1.57)	4.69 (1.43)	±40 (12.2)			
ORA g's	Longitudinal	-13.77	-14.00	±20.49			
	Lateral	3.81	3.82	±20.49			
MAX.	Roll	-13.94	13.90	±75			
ANGULAR DISPL.	Pitch	4.07	-2.97	±75			
deg.	Yaw	77.68	75.80	not required			
	THIV ft/s (m/s)4.11 (1.25)4.13 (1.26)PHD g's13.8114.06		4.13 (1.26)	not required			
			14.06	not required			
	ASI	0.52	0.53	not required			

Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYT-1

5.7 Discussion

The analysis of the test results for test no. NYT-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results is shown in Figure 63. Deformations of, and intrusions into, the occupant compartment that could have caused serious injury did occur. The right side of the vehicle snagged on the box-beam and separated the right-front door from the vehicle's frame, shattering the right-front window. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. Therefore, test no. NYT-1 does not satisfy the MASH 2016 safety performance criteria for test designation no. 3-31.

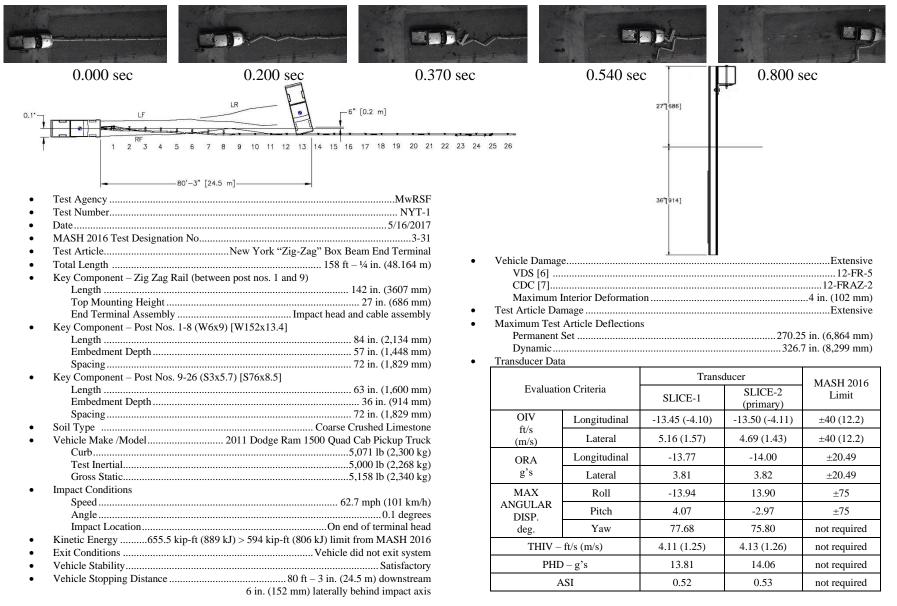


Figure 63. Summary of Test Results and Sequential Photographs, Test No. NYT-1

79

6 SUMMARY AND CONCLUSIONS

Test no. NYT-1 was conducted on the "zig-zag" box beam end terminal according to MASH 2016 test designation no. 3-31. The system consisted of standard box beam guardrail supported by steel posts with a new box beam terminal concept. The posts were spaced at 72 in. (1,829 mm). The top mounting height of the box beam rail was 27 in. (686 mm) from the ground line. A summary of the test evaluation is shown in Table 8.

During the test, the vehicle impacted the system at 62.7 mph (101 km/h) at an angle of 0.1degrees resulting in a kinetic energy of 655.5 kip-ft (889 kJ). During impact, the vehicle first contacted the end terminal assembly, then it travelled through the zig-zag box beam. This action caused the rail at post nos. 1 through 6 to deflect downstream and the rail at post nos. 7 through 13 to deflect to the traffic side of the system. Post nos. 1 through 13 all deflected downstream. Deformation and contact marks were found on the rails, posts, and end terminal assembly. Once the vehicle made contact with the straight box beam between post nos. 8 and 9, the rail section snagged on the vehicle. This behavior caused the right fender, the right-front door, and the front of the right-rear door to tear away from the vehicle's frame. The right-front window also shattered as a result of the snag event. A dynamic deflection of 326.7 in. (8,299 mm) was observed at post no. 4. All occupant risk values were found to be within limits, however, not all occupant compartment deformations were deemed acceptable. The right side of the vehicle snagged on the box beam and separated the right-front door from the vehicle's frame, shattering the right-front window and the windshield. Further, the terminal did not absorb sufficient energy before the vehicle reached the tangent portion of the run. Therefore, test no. NYT-1 did not satisfy the safety performance criteria for MASH 2016 test designation no. 3-31.

Evaluation Factors		Evaluation Criteria							
Structural Adequacy	C.	Acceptable test article performant penetration, or controlled stopping	•	ntrolled	S				
	D.	0. 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.							
		2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.							
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.							
Occupant Risk	H.	Occupant Impact Velocity (OIV MASH 2016 for calculation pr limits:							
Risk		Occupant Impact Velocity Limits							
		Component	Preferred	Maximum					
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)					
	I.	The Occupant Ridedown Accele A5.2.2 of MASH 2016 for cal following limits:							
		Occupant Ridedown Acceleration Limits							
		Component	Preferred	Maximum					
		20.49 g's							
Post – Impact Vehicular Response	N.	Vehicle Trajectory behind the	test article is acceptable.		S				
		MASH 2016 Test Desi	gnation No.		3-31				
		Final Evaluation (Pas	s or Fail)		Fail				
S S	atisfa	ctory U – Unsatisfactory NA	Not Applicable						

Table 8. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

7 CRITICAL ANALYSIS OF ZIG ZAG TERMINAL

The NYSDOT "zig zag" box beam end terminal consisted of box beam segments offset from S3x5.7 posts with tubular steel blockouts. The system had a continuous traffic-side face, and the box beam was cut at 45-degree angles toward the backside, as shown in Figures 64 and 65. Each pair of 45-degree cuts were considered a joint, such that the rail was to deflect, rotate, and bend about those cuts. Splices were used when joints occurred at the box beam ends to form a continuous front face. The impact head consisted of a tubular plate steel box, which fit over the end of the last box beam segment such that the box beam slid inside of the terminal head before the system engaged. A series of bolts were placed in the box beam head. When the terminal head moved down the rail, the upstream end of the box beam would fracture the bolts in double shear before it bottomed out on the terminal head.

Figure 64. Plan View of NYSDOT "Zig Zag" Box Beam End Terminal

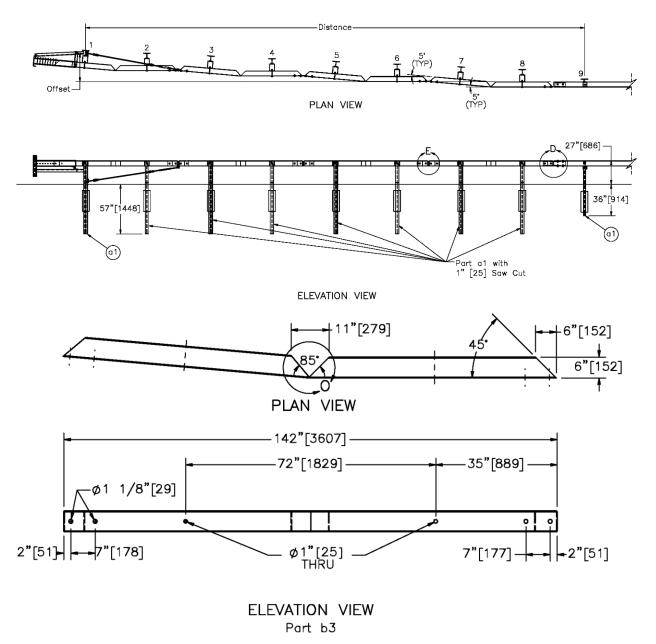


Figure 65. Plan and Elevation Views of Box Beam, Test No. NYT-1

In test no. NYT-1, the vehicle impacted the system at 62.7 mph (101 km/h) and at an angle of 0.1 degrees resulting in a kinetic energy of 655.5 kip-ft (888.7 kN-m). The vehicle displaced the terminal head downstream and caused the rail segments to buckle in a zig-zag pattern. However, the rail failed at the third joint, which resulted in rail spearing on the right-side door and high occupant ride down accelerations. Thus, the terminal did not absorb sufficient energy before the vehicle reached the tangent portion of the run. Following the unsuccessful test of test no. NYT-1, MwRSF researchers analyzed the behavior of the end terminal to determine critical events which contributed to the failure of the terminal system.

7.1 Sequence of Events

Immediately after impact, the impact head displaced downstream, fracturing the steel terminal head shear bolts. When the impact head bottomed out on the first rail segment, all box beam rails between post nos. 1 and 12 deflected downstream. The rail segments attached to post nos. 1 through 6 disengaged from the posts, but remained attached to the blockouts, and displaced laterally to the traffic side of the system.

A zig-zag pattern was formed as the rail deflected about each joint. The front sides of the rail locked when the notched faces collapsed against each other as they deformed. This phenomenon was referred to as "bend-locking". At each bend-locked joint, the compressive force was transmitted from the vehicle through the bend lock and consecutive rail segments, restricting further rotation. This action in turn caused the rail segments to rotate along the inner contact surface and elongated or tear the traffic-side face flange or splice plate. Bend locking occurred at midpoints between post nos. 1 and 2, 3 and 4, and 5 and 6 (joints A, C, and E as shown in Figure 66). The alternating bends caused the thin flanges or splice plates to "open" or bend outward and away from the cut webs, resulting in 180-degree bends (90-degree bends for each consecutive segment). Segments that were not bend locked deflected, such that the backside faces of consecutive box beams would be stacked against each other. Deflections of segments that were not bend locked occurred between post nos. 2 and 3, 4 and 5, and 6 and 7 (joints B, D, and F, respectively, as shown in Figure 66). The alternating sequence of bend-locked and non-bend-locked deflection is shown in Figure 66.

In general, the force required to rotate the box beam segments about joints decreased as the angle of rotation increased (i.e., as longitudinal deflection of the rail segments increased). Thus, as a joint deflected, the joint rotated fully to either 180 degrees (non-bend-locked joints) or 90 degrees (bend-locked joints) before deflecting the rail at the next joint. Therefore, bend-locking at joints A and C and collapse of joint B caused three box beam segments to stack in front of the impacting pickup truck with little reduced deflection downstream. Two consecutive bend-locked segments caused the vehicle to load the flange at joint C in shear instead of in bending, resulting in rail fracture, as shown in Figure 66. Following the fracture of the shear-loaded box beam flange, the rail speared the pickup truck and produced large longitudinal decelerations and occupant compartment deformations.

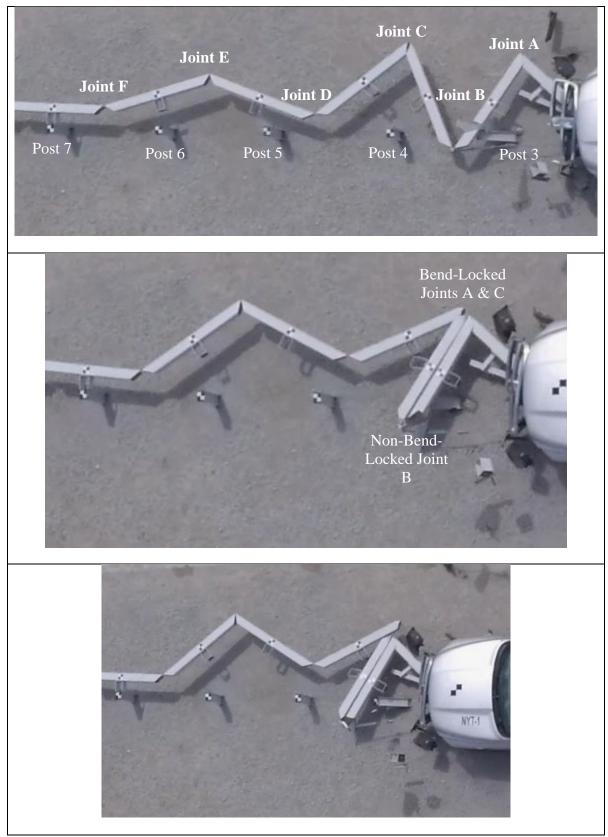


Figure 66. Rail Collapse Sequence and Fracture

7.2 Analysis

All energy-absorbing end terminal systems slow an impacting vehicle by decelerating the vehicle in a controlled manner. Deceleration is produced by a net longitudinal force acting on the vehicle, and the magnitude of the deceleration is based on the ratio of force to vehicle mass. Vehicle velocity is likewise reduced based on the time-integration of the acceleration signal. Therefore, to safely decelerate an impacting vehicle, acceleration must be sustained over a period of time which is within MASH occupant ridedown acceleration limits (e.g., 20 g's). The time corresponding to the acceleration can be plotted against physical position to create a deceleration vs. distance plot. Note that the integration of force acting over a distance is also equivalent to energy:

$$\Delta E = \int \vec{F} \cdot d\vec{r} = \int F_x dx \tag{1}$$

$$\begin{split} E &= Energy \\ F &= Force \ vector \\ F_x &= Longitudinal \ force \ (x-direction) \\ dr &= change \ in \ displacement \ vector \\ dx &= change \ in \ longitudinal \ displacement \ (x-direction) \end{split}$$

During impact, the vehicle is decelerated from the impact force between the vehicle front end and the impact head. After the upstream cable release terminal disengages at post no. 1, the box beam is put into compression and moment-bending by the action of the impact head. The compressive load is transferred through the box beam and becomes a concentrated compression load on the thin flanges at the joint locations. By design, the joints are intended to promote buckling and collapse of the box beam at those locations. Although the beams are constructed with a small eccentric offset to facilitate bending, Euler's formulas for column stability can still be applied to evaluate the limit state of the box beam. The Euler column stability formula is given by:

$$P_{cr} = \frac{\pi^2 EI}{(KL)^2} \tag{2}$$

Where:

 P_{cr} = Euler's critical load (longitudinal compression load on column), E = modulus of elasticity of column material,

I = minimum area moment of inertia of the cross section of the column,

L = unsupported length of column,

K = column effective length factor

The values for *K* vary based on the boundary conditions, as shown in Figure 67. Because the hinges have very little lateral resistance due to the weakened cut flanges, the boundary conditions for the "zig zag" box beam are most closely associated with cantilever bending. Evaluating the beam through the weakened flange and ignoring the eccentricity of the load, *K* is nominally equal to 2.0, *E* is approximately 30×10^6 psi, *I* is approximately 0.0033 in.⁴, *L* is assumed to be 72 in. which is one segment between joints. Using these parameters, the longitudinal load through the beam to cause axial column collapse is approximately 47 lb.

BUCKLED SHAPE OF COLUMN IS SHOWN BY DASHED LINE		(b) + 1/2		(d)	(e)	
THEORETICAL K VALUE	0.5	0.7	1.0	1.0	2.0	2.0
RECOMMENDED DESIGN VALUE WHEN IDEAL CONDITIONS ARE APPROXIMATED	0.65	0.80	1.2	1.0	2.10	2.0
END CONDITION CODE		ROTATIC	N FREE	AND TR	ANSLATK	ON FIXED ON FIXED ON FREE ON FREE

Figure 67. Column Effective Length Factors for Euler's Critical Loads [8]

The Euler column stability calculations are not valid in dynamically-changing loads, because they are derived based on eccentric deflections of the beams, and deflections occur over time. Fast events, such as impact, resist loads with both inertia (translational and rotational) and integration of velocity acting over time. Thus, it is possible to have higher axial loads than the Euler column collapse load over short durations. Nonetheless, the Euler collapse load between adjacent box beam segments indicates that the "zig zag" configuration will quickly experience dynamic collapse after an impact event.

After column collapse, the box beams rotate about joints by plastically deforming the thin flanges or splice plates. The bending of the flanges or splice plates dissipates energy and resists longitudinal vehicle movement based on moment and plastic section. The plastic section modulus of a rectangular cross-section at the weakened joint is given by:

$$Z_p = A_c y_c + A_t y_t \tag{3}$$

Where:

 Z_p = plastic section modulus A_c = plastic compressive section area y_c = location of centroid of plastic compression area from principal bending axis A_t = plastic tensile section area y_t = location of centroid of plastic tensile area from principal bending axis

The effective plastic section of the flange at a weakened joint was approximated using the 6-in. height of the box beam and a total thickness of 3/16 in. The resulting plastic section modulus was approximately 0.053 in.³. The splice plates were 3/8 in. thick and 5/4 in. tall, and had two 3/8-in.

diameter holes aligned vertically through the center of the plate, which was at the location of maximum bending. The plastic bending section through the vertical section centered at the vertical holes was also approximately 0.053 in.³.

Using the plastic section modulus and a yield strength of approximately 50 ksi, the estimated bending moment during plastic hinging was 2,635 lb-in. Ignoring plastic hardening, the effective longitudinal load can be estimated as a function of rotation angle between consecutive joints. Using a 72-in. segment length and converting longitudinal impact force into parallel (compressive) and transverse (moment-bending) components in a briefly-steady-state moment rotation, the longitudinal resistance force as a function of lateral offset to the hinge (joint) is shown in Figure 68. The maximum longitudinal resistance at the start of the plastic hinge formation was approximately 420 lb., and the minimum longitudinal resistance at full plastic collapse was approximately 36.5 lb. Note that the hinge angle is approximately half the angle formed between consecutive box beam segments. Therefore, the energy absorbed by rotating the plastic hinge pickup truck during test no. NYT-1, ignoring rolling friction and inertial loads, approximately 84 joints would have to fully collapse before the impacting vehicle would be brought to a stop.

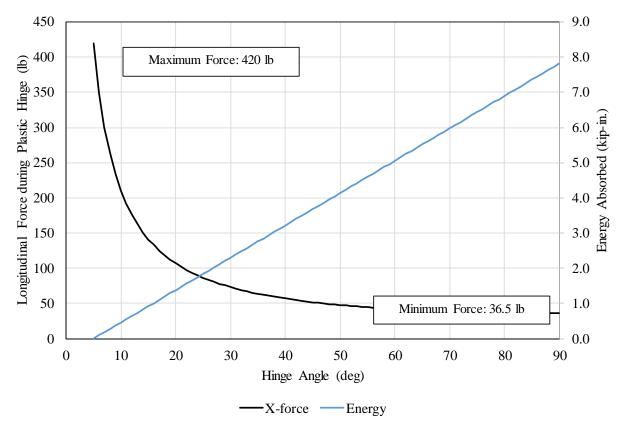


Figure 68. Longitudinal Force During Plastic Hinge Collapse

7.3 Recommendations

Analysis of the collapse of the NYSDOT zig zag box beam end terminal during test no. NYT-1 indicated that the current terminal configuration did not absorb sufficient energy before

the vehicle reached the tangent portion of the run. Therefore, it is necessary that the terminal be modified to be consistent with (1) a non-energy-absorbing, gating terminal or (2) an energy-absorbing, non-gating terminal. Recommendations for both types of terminal configurations are provided below.

7.3.1 Non-Energy Absorbing (Gating Terminal) Design

If the "zig zag" terminal is not intended to absorb the vehicle's energy and bring it to a controlled stop, the terminal should gradually redirect the impacting vehicle such that the vehicle does not spear on the upstream end of the stiff, tangent section of the terminal. Otherwise, the number of cut longitudinal box beam segments required to prevent the stiff end of the box beam from penetrating the vehicle may be very large, spanning as much as 100 ft.

Post-to-rail engagement may need to be modified to change the vehicle path during impact. During test no. NYT-1, the box beam rail segments extended laterally to the traffic-side of the system, and the posts prevented the rail from deflecting backwards. A center-mounted post connection, below the rail, may be necessary to allow the rail to deflect backward upon impact.

Bend-locking was observed when cut faces of box beam interlocked. This behavior prevented the box beam segments from rotating through 180 degrees and stacking in front of the vehicle. Thus, instead of 45-degree V-shaped sections between segments, it may be necessary to redesign the joints between consecutive box beam segments such that the pivot locations permit 180 degrees of box beam rotation. One example of this approach would be to use upper and lower plates with one vertical bolt through each box beam section. The vertical bolts may act as pins facilitating rotation through a virtual point of intersection between two adjacent box beams. Consequently, the initial angular offsets of each box beam segment may be retained to preferentially stack consecutive segments together without bend-locking.

The first box beam segment had an equal length as all subsequent box beam segments. However, longitudinal stacking of segments in the "zig zag" terminal should align along the centerline of the system's line of action. It may be necessary to shorten the first segment to half the length of subsequent segments, such that longitudinal stacking is aligned along the centerline of the line of action.

7.3.2 Energy-Absorbing (Non-Gating Terminal) Design

To safely stop an impacting vehicle engaging the upstream end of a terminal, an energyabsorbing design may be produced which provides consistent longitudinal force sufficient to stop an impacting small car and pickup truck safely within the guidelines provided by MASH. While energy-absorbing designs may be considered, these designs may modify the geometry of the "zig zag" terminal and could result in an entirely different end terminal design. Typical methods of absorbing energy include material shaping (typically plastic deformation), tearing, bolt or stub fracture, friction, or hydraulic resistance.

8 REFERENCES

- 1. Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *NCHRP Report 350: Recommended Procedures for the Safety Performance Evaluation of Highway Features*, TRB, National Research Council, Washington, D.C., 1993.
- 2. *Manual for Assessing Safety Hardware (MASH), Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- 3. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 4. *Center of Gravity Test Code SAE J874 March 1981,* SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 5. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 6. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- 8. Brockenbrough, R.L. and Frederick S.M., *Structural Steel Designer's Handbook: AISC, AASHTO, AISI, ASTM, AREMA, and ASCE-07 Design Standards, Fourth Edition*, (McGraw-Hill, New York, New York, 2006.

9 APPENDICES

Appendix A. Material Specifications

Table A-1. Bill of Materials, Test No. NYT-1

Item No.	Description	Material Specification	Reference		
a1	W6x9 [W152x13.4], 84" [2,134] Long Post (Post nos. 1 through 9)	ASTM A992 Min. 50ksi Steel	H#59072442, H#59072444		
a2	S3x5.7 [S75x8.5], 63" [1,600] Long Post	ASTM A36	H#21116		
a3	24"x8"x1/4" [610x203x6] Soil Plate	ASTM A36	H#1700330		
a4	8"x6"x1/4" [203x152x6], 6" [152] Long Blockout	ASTM A500 Gr. B	H#3793C4		
a5	5"x3 1/2"x3/8" [127x89x10], 4 1/2" [114] Long L-Bracket				
b1	TS6"x 6"x 3/16" [152x152x5], 216" [5,486] Long Box Beam	ASTM A500 Gr. B	H#U2133, H#U2139, H#U2141		
b2	TS6"x 6"x 3/16" [152x152x5], 216" [5,486] Long Box Beam	6"x 6"x 3/16" [152x152x5], 216" [5,486]			
b3	TS6"x6"x1/4" [152x152x6], 142" [3,607] Long Box Beam, Bent	ASTM A500 Gr. B	H#C79938		
b4	27"x5 3/8"x 5/8" [686x137x16] Splice Plate	ASTM A36	H#W19665		
b5	TS5"x5"x1/4" [127x127x6], 25 1/2" [648] Long Box Beam, Cut ASTM A500 Gr. B		H#A612210		
b6	24"x5 1/4"x3/8" [610x133x10] Plate, Bent	ASTM A36	H#B607172		
b7	8"x2 1/2"x5/8" [203x64x16] Keel Plate	ASTM A36	H#E6I159		
c1	W6x15 [W152x22.3], 72" [1,829] Long Post	ASTM A992 or ASTM A572-50	H#59072980		
c2	20"x14"x3/16" [508x356x5] Plate	ASTM A36	H#B610331		
c3	6 3/16"x4"x1/2" [157x102x13] Plate	ASTM A36	H#A615621		
c4	6 1/4"x4"x1/2" [159x102x13] Plate	ASTM A36	H#A615621		
c5	6 3/16"x6"x1/2" [159x152x13] Plate	ASTM A36	H#A615621		
d1	3"x2"x3/8" [76x51x10], 4.8" [122] Long L-Bracket	ASTM A36	H#63142915		
d2	3"x4"x5/16" [76x102x8] Plate	ASTM A36	H#B607172		

93

Item No.	Description	Material Specification	Reference
e1	10"x9"x1/2" [254x229x13] Box Beam Cable Anchor Base Plate	ASTM A36	H#17011041
e2	4"x4"x1/4" [102x102x6] Box Beam Cable Anchor Gusset	ASTM A36	H#17014221
e3	4"x4"x1/2" [102x102x13] Box Beam Cable Anchor Mounting Plate	ASTM A36	H#17011041
f1	TS7"x7"x3/8" [178x178x10], 48" [1,219] Long Box Beam	ASTM A500 Gr. B	H#85197PT
f2	C12x30, 24" [610] Long C-Channel	ASTM A36	H#55033620
f3	3"x3"x1/4" [76x76x6], 18" [457] Long L-Bracket	ASTM A36	H#63144478
f4	3"x3"x1/4" [76x76x6], 56" [1,422] Long L-Bracket	ASTM A36	H#63170444
f5	3"x3"x1/4" [76x76x6], 6 1/2" [165] Long L-Bracket	ASTM A36	H#63144478
g1	3/4" [19] Dia. 3x7 Cable, 66 5/16" [1,676] Long IWRC IPS Wire Rope	ASTM A741 Type 1 (AASHTO M30 Type 1)	H#53139015, H#53139021
g2	3/4" [19] Dia. 6x19, 56" [1,422] Long IWRC IPS Wire Rope	ASTM A741 Type 2 (AASHTO M30 Type 2)	COC Inv# 5038896
g3	3/4" [19] Dia. 6x19, 145 3/4" [3,702] Long IWRC IPS Wire Rope	ASTM A741 Type 2 (AASHTO M30 Type 2)	COC Inv# 5038896
g4	Bennet Cable End Fitter	ASTM A27(AASHTO M103) Gr. 70-40 Class 1	H#DA7, H#DA9
g5	Crosby Threaded Turnbuckle	Stock No. 1032714	H#145050
g6	3/4" [19] Dia. UNJ, Crosby HG 4037 Jaw	Stock No. 1073135	COC Certificate#CC1- 2017040700802
g7	Cable Wedges	ASTM A47 Gr. 32510	H#DA8
g8	3/4" [19] Dia. UNC, 11" [279] Long Threaded Rod	ASTM A307 Gr. A or SAE Gr .2	H#AU0810817802
g9	BCT Anchor Cable End Swaged Fitting	Grade 5	H#75063022 H#75062074 H#75063075

Table A-2. Bill of Materials, Test No. NYT-1, Cont.

94

December 16, 2020 MwRSF Report No. TRP-03-391-20

Item No.	Description	Material Specification	Reference
g10	3/4" [19] Dia. UNC Square Nut	ASTM A563A	H#15311340-3
g11	3/4" [19] Dia. UNC Hex Nut	ASTM A563A	COC Only
g13	1" [25] Dia. UNC Heavy Hex Nut	ASTM A563DH	H#166334
g14	1" [25] Dia. Plain Round Washer	ASTM F844	H#0266540
h1	1/4" [6] Dia. UNC, 8" [203] Long Fully	Bolt - A307-Gr. A	Bolts: H#10201285-3
11.1	Threaded Hex Head Shear Bolt and Nut	Nut - ASTM A563A	Nuts: H#184259
h2	1/4" [6] Dia. UNC, 1" [25] Long Fully Threaded	Bolt - ASTM A307 Gr. A	Bolts: H#715030091
112	Hex Head Bolt and Nut	Nut - ASTM A563A	Nuts: H#184259
h3	1/4" [6] Flat Washer	ASTM F844	16H-168236-9
h4	3/8" [10] Dia. UNC, 7 1/2" [191] Long Hex	Bolt - ASTM A307 Gr. A	Bolts: H#715030688
	Head Bolt and Nut	Nut - ASTM A563A	Nuts: H#169D0729
h5	3/8" [10] Dia. Plain Round Washer	ASTM F844	Part#1133182
h6	1/2" [13] Dia. UNC, 1 1/2" [38] Long Hex	Bolt - ASTM A307 Gr. A	Bolts: Lot# FAS1638
110	Head Bolt and Nut	Nut - ASTM A563A	Nuts: H#180132
h7	1/2" [13] Dia. Plain Round Washer	SAE Low Carbon Gr. 2	L#16H-168236-10
	3/4" [19] Dia. UNC, 8" [203] Long Hex Head	Bolt - ASTM A307 Gr. A	Bolts: H#G1607088001
h8	Bolt and Nut	Nut - ASTM A507 GI. A	H#1608020500
	Bolt and Nut	Nut - ASTM ASOSA	Nuts: H#331502913
h9	3/4" [19] Dia. UNC, 1 1/2" [38] Long Heavy	Bolt: ASTM F3125 Gr. A325	Bolts: L#2010360300
119	Hex Head Bolt and Nut	Nut: ASTM A563DH	Nuts: H#75062833
h10	3/4" [19] Dia. UNC, 2" [51] Long Heavy Hex	Bolt: ASTM F3125 Gr. A325	Bolts: H#NF15103298
1110	Head Bolt	Nut: ASTM A563DH	Nuts: H#75062833
h11	3/4" [19] Dia. UNC, 2 1/2" [64] Long Heavy	Bolt: ASTM F3125 Gr. A325	NOT REQUIRED
	Hex Head Bolt	Nut: ASTM A563DH	
h12	3/4" [19] Dia. UNC Heavy Hex Nut	ASTM A563DH	H#75062833
h13	3/4" [19] Dia. Plain Round Washer	ASTM F844	n/a
h14	3/4" [19] Dia. Hardened Flat Washer	ASTM F436	H#C79696
h15	3/4" [19] Dia. Lock Washer	Steel	H#J510104136
h16	7/8" [22] Dia. UNC, 8 1/2" [216] Long Heavy	Bolt: ASTM F3125 Gr. A325	Bolts: H#NF16102579
	Hex Head Bolt and Nut	Nut: ASTM A563DH	Nuts: L#23468-75062745
h17	7/8" [22] Hardened Flat Washer	ASTM F436	H#1DR73

Table A-3. Bill of Materials, Test No. NYT-1, Cont.

95

USA	VVC ((0)1 1177	MANILLATTANING CODE 1/80	LENGTH	WEIGHT	5 WEIGHT HEAT/BATCH	
	RY,KS 66031-1127	MANHATTAN,KS 66505-1688 USA	50'00"	10,800 LB	59072442/02	
SALES ORDE 4530123/0000		CUSTOMER MATERIAL Nº 000000000037690050	SPECIFICATION / D ASTM A6-14 ASTM A709-15			
ER	BILL OF LADING 1327-0000218064	DATE 12/06/2016	ASTM A992-11 (2015), CSA G40.21-13 345WM			
\$ 0.026	\$j 9, 0.21 0.3	u Ni Çr 13 0.10 0.19	Mo Sp 0.022 0.008	V Nb 0.002 0.013	A) 0.003	
UTS PSI 68371 69011	XS MPa 373 378	UTS MPa 471 476	Y/T_rati 0.790 0.794	G/L. Inch 8.000 8.000		
Elong. 24.50 24.50	0.01					
C 0 1 7	plated pos	TS				
6x9 soil] 17 SMT						

Figure A-1. 84-in. (2,058-mm) Long Post for Post Nos. 1 through 8, Test No. NYT-1

US-ML-MIDLOTHIAN 300 WARD ROAD MIDLOTHIAN, TX 76065 USA CUSTOMER PURCHASE ORDER NUMBER 4500277171		CUSTOMER SHIP TO CUSTOMER BILL TO STEEL & PIPE SUPPLY CO INC STEEL & PIPE SUPPLY CO INC JONESBURG INDUSTRIAL PARK JONESBURG, MO 63351 MANHATTAN,KS 66505-1688 USA					GRAJ A992 LENG 40'00	A572-50		PE / SIZE Flange Beam / (WEIGHT 8,640 LB	5 X 9# / 150 X 00000687 HEAT / BATCH 59072444/02
		USA USA SALES ORDER CUSTOMER MATERIAL Nº 4481119/000020 00000000037690040				SPEC	CIFICATION / DA 1 A6-14	NTE or REVISION			
		BILL OF LADING 1327-0000217277			DATE 11/28/2016		ASTM A709-15 ASTM A992-11 (2015), A CSA G40.21-13 345WM				
CHEMICAL COMPOSITION C Mn 0.07 0.92	P 0.013	\$ 0.035	\$į 0.21	Çu 0.24	Ni 0.09	67 0.13	Mo 0.018	\$n 0.005	% 0.002	Nb 0.011	۵.003
CHEMICAL COMPOSITION CEgyA6 0.28					10						
MECHANICAL PROPERTIES YS 0.2% PST 55973 56818	69	TS SI 803 847	Ň	YS APa 386 392	4	ES Pa 81 89	¥/Ţ 0.8 0.8	rati 02	8.	G/L ach 000 000	
MECHANICAL PROPERTIES G/L mm 200.0 200.0	23	ong. .90								-	
COMMENTS / NOTES								4-17-4 			
				records as contained					are correct and	in compliance wi	th
specifie	hark	BH	luding the billets ASKAR YALAMANC ALITY DIRECTOR	s, was melted and n	nanufactured in	the USA. CMTR	complies with F	millani	a land	IARRINGTON	R

Figure A-2. 84-in. (2,058-mm) Long Post for Post Nos. 1 through 8, Test No. NYT-1

PACKING LIST/MTR

	CUSTOMER ORD	BRNG, D	A760	OUR ORDER NO.	NN CPM.	L COLL	CUS	omer no.	GRA	NGE DATE				0	ATE SEP	150	LON	S NOMEN	ĸ
	33410	1/	18/26	48501-3		xxx	283	00002	c 2	/30/16				4	20	IG		3-138	7
				·		ROUTE REQUE	57020	1	TERMS		ROUTING VIA	TI	PX804	991			B.O.L.	# 254	989
						RAIL		NE	F 30 DAY	s	This is to certify	the the ma	torial spa	cification	is atru				100000
	P O BOX	SIGN CORP 123 MILLS NY 13	417		C 5	I-HIGHWAJ SXT UTIC TCC 33125 EW YORK M	a new Yo SXX	rk nysw			report as containe	stin the res 52	cords of	this comp T	ery.	-			XXX
	1 19200,	DPCCDU		LENOT		QUANTIT	- 1 - 23	TOWATED	1		ł		QUAN		-	· · · · ·	<u> </u>		
	CODE	DESCRIP		ORDERE	<u> </u>	ORDERED		WZICHT		BUNDLES	SHIPPED	Mac	<u>cs</u>	LIN. FE	er	POUNDS]		
•	2658	3" X S.7# I NO HOLES. BA															1		
	1	NO CLIPS							1	20 		1				Ø.,	1		- 20 E
		SWV 2 ASTM	ASTM AS	6-01/A709-11	GR 36			640				ļ					4-		
		FAX CERTS TO	315-736	-71 2															
		SHIP VIA RAI MELTED & MAN		D FOR PELEASE		- We deal													
		265842	01/25/	a second second		756		60,985#		-		1	1		1				
_		265842	01/25/			-720 :		72,3684		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19 of 36	<u>}</u>	684	42'	\rightarrow	166,000			
			03/20/			001 .		03,130#			27 01 35	TARP >			1	100,000	1		
							_ <u> </u>					SHIPPI	D WIT	K: 485	02-3	08	1	3.	
							\rightarrow										+		
<u></u>												<u>.</u>							
		All melti	ng and s	nanufacturing	proces	ses for	these as	terials	decurred	i in the	U.S.A.						1.		
	HEATNO	Strengtl Yield	Tensil		tion Lth		C1 C	- Ní	Мо	Мь	HEATNO.	c	NON	7	\$	ຸລ		SN	B
	21116	50000	68000	22.9	8		20 .29	.20	. 02	-001	21116	.13	.55	.011	.024	.15	.003	.021	.28
	18794	53000	74000	20.6	8		29 .20	.10	-02	.001	18794	16	.74	. 016	.026	.28	-007	.021	.35
	21552	48000	70000	21.8	8		31 .23	13	.03	- 003	21552	.13	.60	- 031	.041	-30	_004	.013	.32
	21118	46000	68000	23.6	8		28 .13	e .og	.02	.001	21118	-15	.66	.010	.026	.27	.003	.012	.31

Figure A-3. 63-in. (1,600-mm) Long Post for Post Nos. 9 through 26, Test No. NYT-1

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 02/23/2017 TIME 21:39:01 USER GIANGRER

SOLD TO							P		e 0020 Gibson Rd OK 7401	5-3033				
Order 40280849-0010	Material No. 70872120TM	Descrip 1/4		0 436 TEN	MPERPASS S		Quantity 15	Weig 9,1-		r Part	c	ustomer PO		hip Date 2/23/2017
40280843-0010	700721201M		72 X 12											
						Chemical /	Analysis							
Heat No. 17003		Vendor B	IG RIVER S	TEEL LLC		DOMESTIC	:	Mil	BIG RIVER S	STEEL LLC	м	elted and Man	ufactured in	the USA
Produced from C Carbon Mangar		Sulphur	Silicon	Nickel	Chromium	Molybdenum	Bor	on Coppe	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.1900 0.8		0.0060	0.0200	0.0400	0.0600	0.0200				0.0000	0.0020	0.0010	0.0083	0.0060
					Mecha	nical / Phys	sical Pro	perties						
Mill Coil No. 17	003301-02													
Tensile	Yield		Elong	Rckwl	(Grain	Char	ру	Charpy Dr	Ch	narpy Sz	Temper	ature	Olsen
80000.000	57000.000		23.00					0	NA					
78400.000	53300.000		24.70					0	NA					
74800.000	50800.000		26.30					0	NA					
69500.000	46800.000		29.10					0	NA					
Batch 000	04659131 15 EA	9,189 LB			Batch 000	4659132 15	EA 9,1	89 LB		Batch	0004659133	15 EA 9,18	9 LB	
Batch 000	04659148 15 EA	9,189 LB			Batch 000	4659156 12	EA 7,3	51.200 LB						

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Figure A-4. Soil Plate, Test No. NYT-1

Atlas Tube Corp (Chicago) 1855 East 122rd Street Chicago, Illinois, USA 60633 Ref.B/L: 80748789 Date: 01.26.2017 Customer: 179 **as** Tube ۸ **DDD** A DIVISION OF ZEKELMAN INDUSTRIES 773-646-4500 Tel: Fax: 773-646-6128 MATERIAL TEST REPORT Sold to NY DOT BOX BEAM Shipped to Steel & Pipe Supply Company 401 New Century Parkway NEW CENTURY KS 66031 USA Steel & Pipe Supply Company PO Box 1688 MANHATTAN KS 66505 USA R#17-515 Steel Tubes Blockouts Material: 8.0x6.0x250x40'0"0(2x3). Material No: 800602504000 Made in: USA Melted in: Canada Sales order: 1151714 Purchase Order: C450006295 Cust Material #: 6680060025040 Heat No С Mn Ρ S Si AI Cu Cb Mo Ni Cr v Ti в N 3793C4 0.750 0.020 0.000 0.001 0.000 0.000 0.190 0.013 0.005 0.031 0.030 0.000 0.000 0.020 0.030 Bundle No PCs Yield Tensile Eln.2in Certification CE: 0.33 M800680527 054097 Psi 070624 Psi 35 % ASTM A500-13 GRADE B&C 6 Material Note Sales Or.Note: Material: 10.0x8.0x375x40'0"0(2x2). Material No: 1000803754000 Made in: USA Melted in: Canada Sales order: 1151715 Purchase Order: C450006295 Cust Material #: 66100080037540 Heat No С Mn P s Si A1 Cu Cb Mo Ni Cr v Ti B N 0.030 0.000 0.000 0.020 0.020 0.000 0.001 0.000 0.000 3469C4 0.200 0.730 0.011 0.007 0.030 0.027 Certification CE: 0.33 **Bundle No** PCs Yield Tensile Eln.2in M900893830 4 058581 Psi 31 % ASTM A500-13 GRADE B&C 073963 Psi Material Note: Sales Or.Note:

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. Unstruct and using the two D1.1 method. Page : 3 Of 3 Page : 3 Of 3

Figure A-5. 6-in. (152-mm) Long Blockout, Test No. NYT-1

	PORATION			Mill Cer 3/15/20			8		DARUA	ITR #: C1-366 00 Steel Mill R IGTON, SC 29
	EL SOUTH CA	ROLINA							Fa	(843) 393-5 (843) 395-8
old To: DI Hi PO B NEW (315) Fax: (OX 123 YORK MILLS, NY 13 736-8312 316) 736-7172	RUCTURE 8417-0123			Ship To: DI 40 PO 	HIGHWAY S GREENMAN BOX 123 W-YORK-MI 5) 736-8312 x: (315) 736-	SIGN & STRUC NAVE LLS, NY-13417 7172	TURE •0000		
Customer P.O.	33537		•••••				Sales Order	242841.	3	
Product Group	Merchant Bar Qual	iity					Parl Number	2160363	3748010W0	
Grade	NUCOR MULTIGR	ADE			•		Lot#	DL16100	068201	
Size	5x3-1/2x3/8 Angle	••••					Heat#	DL16100	0682	
Product	5x3-1/2x3/8 Angle	40' NUCOR N	MULTIGRAD	DE			B.L. Number	C1-6868	104	
Description	NUCOR MULTIGR	ADE					Load Number	C1-3664	24	* *·····
ustomer Spec				,		C	ustomer Part #	1		
eby certify that the m	alerial described herein has	been manufactu	red in accordan	ice with the specific	ations and stand	lards listed above	a and that it satisfies	those requirem	enis.	
I Date: 2/6/2010	i Melt Date: 2/1/2(016 Qty Sh	lipped LBS	5: 9,984 Qty	Shipped Po	os: 24				
t Date: 2/1/2016 C M .16% 0.66 Ti CÉ4	n P	S 0.030%	Si 0.20%	Cu 0.31%	Ni 0.10%	Cr 0.16%	Mo 0.030%	V 0.0390%	СЬ 0.002%	Sn 0.015%
001% 0.34										
				·····		-				
020; C. E. USA	. G4020, AASHTO M	270								
	. G4020, AASHTO M	270								
Date: 2/6/2016	. G4020, AASHTO M	270								
Date: 2/6/2016	. G4020, AASHTO M	270	Tensile 1	1: 72.000 <i>os</i> i			Elone	ation: 27%	in 8"(% in 2	03.3mm)
	. G4020, AASHTO M	270		1: 72,000psi 2: 72,000psi			CAN INCOME.		in 8"(% in 2 in 8"(% in 20	
Date: 2/6/2016 1 1: 54,000psi 1 2: 55,000psi		and the second secon	Tensile 2	2: 72,000psi			Elong	ation 26%	In 8"(% In 20	
Date: 2/6/2016 11: 54,000psi 12: 55,000psi 12: 55,000psi 1	LD REPAIR WAS NO NUFACTURED IN TH NOFACTURED IN TH IM, OR ALPHA SOU	GRADE MEE 709/709M-10 GR50(345), A	Tensile 2 TS THE RE 0 GR36(250) ASME SA36	2: 72,000psf EQUIREMENT) & GR50(345) //SA36M-07, C			Elong 08, A529/529M W(300W) & GRE TO A FULLY KI	ation 26% -05(2009) 50W(350W) ILLED, FINI	in 8"(% in 20	
Date: 2/6/2016 11: 54,000psi 12: 55,000psi 12: 55,000psi 1	ents: NUCOR MULTI 2M-07 GR50(345), A DM-10 GR36(270) & 1	GRADE MEE 709/709M-10 GR50(345), A	Tensile 2 TS THE RE 0 GR36(250) ASME SA36	2: 72,000psf EQUIREMENT) & GR50(345) //SA36M-07, C			Elong 08, A529/529M W(300W) & GRE TO A FULLY KI	ation 26% -05(2009) 50W(350W) ILLED, FINI	in 8"(% in 20	
Date: 2/6/2016 11: 54,000psi 12: 55,000psi 12: 55,000psi 1	ents: NUCOR MULTI 2M-07 GR50(345), A DM-10 GR36(270) & 1	GRADE MEE 709/709M-10 GR50(345), A	Tensile 2 TS THE RE 0 GR36(250) ASME SA36	2: 72,000psf EQUIREMENT) & GR50(345) //SA36M-07, C			Elong 08, A529/529M W(300W) & GRE TO A FULLY KI	ation 26% -05(2009) 50W(350W) ILLED, FINI	in 8"(% in 20	
Date: 2/6/2016 11: 54,000psi 12: 55,000psi 12: 55,000psi 1	ents: NUCOR MULTI 2M-07 GR50(345), A DM-10 GR36(270) & 1	GRADE MEE 709/709M-10 GR50(345), A	Tensile 2 TS THE RE O GR36(250) ASME SA36	2: 72,000psf EQUIREMENT) & GR50(345) //SA36M-07, C	L VE NOT BEE	EN USED IN	Elong 08, A529/529M W(300W) & GRE TO A FULLY KI	ation 26% -05(2009) 50W(350W) ILLED, FINI	in 8"(% in 20	
Date: 2/6/2016 11: 54,000psi 12: 55,000psi 12: 55,000psi 1	ents: NUCOR MULTI 2M-07 GR50(345), A DM-10 GR36(270) & 1	GRADE MEE 709/709M-10 GR50(345), A	Tensile 2 TS THE RE O GR36(250) ASME SA36	2: 72,000psl	L VE NOT BEE	EN USED IN	Elong 08, A529/529M W(300W) & GRE TO A FULLY KI	ation 26% -05(2009) 50W(350W) ILLED, FINI	in 8"(% in 20	

Figure A-6. 4¹/₂-in. (114-mm) Long L-Bracket, Test No. NYT-1

BULL MOOSE TUBE ELKHART FACILITY CERTIFICATION OF TESTS EN 10204:2004 TYPE 3.1 CERT

11/01/16 Page 1 of 1

1819 Clarkson Rd. Chesterfield, Missouri 63017 636-537-2600

BILL TO DI Highway Sign & Structure P.O. Box 123 New York Mills NY 13417-0123

6x6x3/16 Guardrail SHIP TO Di Highway 40 Greenman Ave. New York Mills

NY 13417

B/l	_ Numbe	r 31	95443						Shij	o Via					1	4_02		
	6" SQ	X 0.1	87 HR)	(17' 11	.5''								Ord	er#		5239	88	
	152.4 r					Ladle	. Physi	icals, D	WTT						e Ord		33610	
			lail 710-	-21 Rail			,,.						Iten			1107		
										Cu	stome	r Item						
	Raw M	ateria	al is of I	Domest	ic Orio	ain - Me	elted ar	nd Manı	Ifactur									
					•			U2133	-							D	NDT	
	MN	Р	S	AL	SI	СВ	CU	CR	NI	V	мо	В	ΤI	N	CE	YLD psi	TSN psi	ELN %
0	.650	.012	.006	.028	.020	.023	.150	.070	.070	.002	.020	0.000	.002	.008	.195	70240	71530	31
	6" SQ 2	X 0.1	87 HR X	(17' 11.	5"								Ord	er#		5239	88	
	152.4 n	nm				Ladle	, Physi	cals, D	WTT				Pure	chase	ord	er #	33610	
	NY Gua	ard R	ail 710-	21 Rail									Item	#		11070	3840	
										Cu	stome	r Item	#					
	Raw M	ateria	al is of l	Domest	ic Orig	jin - Me	lted ar	id Manu	Ifactur	ed in th	e USA							
						He	eat # =	U2139								D	NDT	
	MN	P	S	AL	SI	CB	CU	CR	NI	V	MO	В	ΤI	N	CE	YLD psi	TSN psi	ELN %
0	.660	.012	.003	.034	.020	:022	.130	.070	.070	.002	.020	0.000	.001	.009	.195	60900	70320	29
	6" SQ 2	X 0.18	37 HR X	. 17' 11.	5"								Orde	er#		5239	88	
	152.4 n	nm				Ladle	, Physi	cals, D	NTT				Purc	hase	ord	er#	33610	
	NY Gua	ard R	ail 710-	21 Rail									ltem	#		11070	3840	
										Cu	stome	· Item	#					
	Raw Ma	ateria	l is of E	Domest	ic Orig	jin - Me	Ited an	d Manu	Ifactur	ed in th	e USA							
						He	at # =	U2141								D	NDT	
	MN	Р	S	AL	SI	CB	CU	CR	NI	V	МО	В	ΤI	N	CE	YLD psi	TSN psi	ELN %
0	.620	.013	.005	.032	.020	·.022	.130	.060	.060	1.002	.020	0.000	.001	.007	.186	62160	69380	33
	6" SQ)	K 0.18	87 HR X	17' 11.	5"								Orde	er #		5239	88	
	152.4 n	ım				Ladle	Physi	cals, D\	NTT				Purc	hase	Orde	ər#	33610	
	NY Gua	ard Ra	ail 710-:	21 Rail									Item	#		11070	7 3840	
										Cu	stomer	Item	#					
	Raw Ma	ateria	l is of C	omesti	ic Orig	in - Me	lted an	d Manu	factur	ed in th	e USA							
						He	at # =	U2405			e e					D	NDT	
	MN	Ρ	S	AL	SI	CB	CU	CR	NI	V	MO	В	ΤI	Ν	CE	YLD psi	TSN psi	ELN %
0	.670	.012	.003	.037	.020	:020	.160	.080	.070	.002	.020	0.000	.001	.008	.201	67050	70750	36
					*)													
			<u></u>	lyde	u.t	-												
ali	ty Mana	ger:		-ycu	(UN)													

THIS WELDED STEEL TUBING IS MANUFACTURED IN THE UNITED STATES OF AMERICA AND HAS BEEN PRODUCED IN ACCORDANCE WITH THE STATED SPECIFICATION. LADLE CHEMISTRIES ARE REPORTED FROM DOCUMENTS PROVIDED BY THE SUPPLYING STEEL MILL. ANY PHYSICAL AND MECHANICAL TESTING RESULTS SHOWN ON THIS CERTIFICATION ARE CORRECT AS CONTAINED IN THE RECORDS OF THE COMPANY.

Figure A-7. 216-in. (5,486-mm) Long Box Beam, Test No. NYT-1

In.	· .			BE	XLI	UBE				*******
100	00 BURLINGT	ON STREET,	STE	kansas city, w el ventures Certified	, LLC dt	a EXLTUBE	10 TOLL FF	REE 1-800-892	-TUBE	r
Customer: SPS - New Centu				Size: 06.00X06.00		Customer Order N 4500277037	10:	Date:	(16/2016	
401 New Century NEW CENTURY K		127		Gauge: 1/4		Delivery No:828 Load No:38262				,
		•		Specification: ASTM A500-	13 Gr.B/C		[8]		a.	
		• 4	1					~	s	
Heat No Yie KS C79938 60	51	Tensile KSI 65.4		gation Inch O			7 4		-	
								· .		
	4 4 1									
Heat No C79938	C 0.0700	MN 0.8500	P 0.0100	S 0.0020	SI 0.0300	CU 0.1600	NI 0.0500	CR 0.0600	MO V 0.0200 0.0	0010
		,								
							,			
manufacturing in	y that all test	t results show	vn in thi	.S.A. s report are corre ters encompasse in accordance w	a within tr	e scope of the	Specification	company. All is denoted in t	testing and he specification	and
	not come ir	nto direct con		n mercury, any of				ng devices dur	ing our manufac	turing
			204 Sec	tion 4.1 Inspectio	n Certificat	e Type 3.1				
This material is .										

Jorather Wolf

Jonathan Wolfe Quality Assurance Manager

i

Figure A-8. 142-in. (3,607-mm) Long Bent Box Beam, Test No. NYT-1

1*

,

lontucky	i.luchio	Stuel			Januar	y 28, 201	6	Phon	kentucky e: (606) 9 (606) 929	29-1200	eel.com Toll F	² rec; (80)	0) 333-30	12
00110100			ol o -					Page	4					
_ snip	10: 01	Highway Greeman	Sign & S	inichire		agan is non i gann.					01017			• •• ·• ·•
а 12		v York M		13417					herby cert	ify that th	ese Che	mical an		
									trio Steel	1				•
Sold	COL	IOHWA RPORAT	ION	& STRU	CTURE			By:_	W	11. 2.	Compin	You	•	
		, BOX 12 W YORK		NV 1941	a				Williem	I. Complor	Q.C. Man	1586	• .	
•	US/		WILLO	141 1241	/			Mercy materi	ry source ta al. No weld	nterists have repair perfo	not been u med.	sed in the p	ia calisubou	f this
Cert #:6	164		Ora	dc:A36 (ν	18				Size	:0.625 >	\$ 5,375		FL
Job:K00	0005409	-0	Ord	ler:KO00	006368-1	L				Size	(MM):1	5,88 X 1	36.53	
P.O, No:				n: 10270		Cus	t Item:			Len	gth:243.	0000		
A36 CV,	FL SE ,	0.625 x 5	.375 ,20'	3",20' 3"	,):6172.2		
. <u>He</u> W19665	at .	<u>Furna</u> BAF	<u>ce Mo</u> US/	olted Son A	rce Bit	<u>Cast</u>	CE		<u>pı</u>	(C) (<u>m</u> 0.0000			
Ladle C	hemistr	y Analys	is			n g want da ba								
<u>C</u> .	Mŋ	P	<u>s</u> ,	Si	Ci	Ni	Cr	Mo	Sn	Δι	Y	Nb	<u>B</u>	Ц
0.15	0.60	0.010	0.016	0.27	0.19	0.09	0,13	0,03	0,008	0.005		0.002		0.0004
A.	Pb	Q.	Ca	Bi	Se	To		01	7.	77.	11/	113	20	
	0.0004		0.0005		<u>Se</u>	Ic	As 0.005	<u>Sb</u> 0.001	Zu	Zt	<u>w</u>	<u>H2</u>	<u>CO</u> 0.0070	-
0.008 omluy (, J1 J2	0.0004 ASTM / J3 J4	A225) J5 J6	0.0005 J7 J8	J9 J10			0.005	0.001	241) J24 J28		Т.			-
0.008 omluy (, J1 J2	0.0004 ASTM / J3 J4	A225)	0.0005 J7 J8	J9 J10			0.005	0.001			<u></u>		0.0070	-
0.008 omluy (, J1 J2	0.0004 ASTM / J3 J4	A225) J5 J6 clusions	0.0005 J7 J8	J9 J10 (45)			0.005 J15 J16	0.001 J18 J20			ASTM È	Gral	0.0070	
0.008 omluy (, J1 J2	0.0004 ASTM / J3 J4 Iallic Inc	A225) J5 J6 clusions	0.0005 J7 J8	J9 J10 45) ,M Q T	J11 J12	J13 J14	0.005 J15 J16	0.001 J18 J20) J24 J28	J32	****	Graf 381	0.0070	- Railo
0.008 omluy (, J1 J2 Yon-Me	0.0004 ASTM / J3 J4 Iallic In _Meth	A225) J5 J6 clusions	0.0005 J7 J8 (ASTM E	J9 J10 45) .M Q T H H T	J11 J12	J13 J14 Fre	0.005 JIS JIG Magaeile Quoncy,	0.001 J18 J20 Particle) J24 J28	J32 LX	ASTME B C	Grai 381 S	0.0070 n Size Reduction	– Rallo
0.008 ioniluy (J1 J2 Yon-Mei	0.0004 ASTM / J3 J4 Iallic In Mell B	A225) J5 J6 <u>clusions</u> <u>c</u>	0.0005 J7 J8 (ASTM E	ј9 ј10 45) Т Н	J11 J12	J13 J14 Fre	0.005 JIS JIG Magaeile Quoncy,	0.001 J18 J20 Particle) J24 J28 Inspection <u>Sover</u> 1	J32 LX	ASTM'E B. C. FHE US/	Gral	0.0070 n Size Reduction	Ratio
0.008 ominy (, Ji J2 Non-Mei A	0.0004 ASTM / J3 J4 Iallie In Mell B ' ' ' ' Yield	A225) J5 J6 <u>clusions</u> <u>C</u> es Yield	0.0005 J7 J8 (ASTALE D Yield	J9 J10 	J11 J12 ethod C. S Elong	J13 J14 Fre	0.005 JIS JIG Magaeile Quoncy,	0.001 J18 J20 Particle) J24 J28 Inspection <u>Sover</u> 1	J32 LX	ASTME B C	Gral	0.0070 n Size Reduction	Ratio
0.008 ominy (, Ji J2 Non-Met A Fensile I fensile I	0.0004 ASTM / J3 J4 Initic Init Meth B ' ' Yield 0,2%	A225) J5 J6 clusions C C C es Yield 0.01%	0.0005 J7 J8 (ASTALE D Yield	J9 J10 45) .M Q T H T H Elong % 2 "	J11 J12 ethod C. S Elong % 8 ¹¹	J13 J14 Fre	0.005 JIS JIG Magaeile Quoncy,	0.001 J18 J20 Porticle & MAN) J24 J28 Inspection Sover1 WFACTU	J32 Ly RED IN RC	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction	- Railo <u>IIV</u>
0.008 ominy (, Ji J2 Non-Met A Fensile I fensile I	0.0004 ASTM / J3 J4 Iallie In Mell B ' ' ' ' Yield	A225) J5 J6 clusions C C C es Yield 0.01%	0.0005 J7 J8 (ASTALE D Yield	J9 J10 	J11 J12 ethod C. S Elong % 8 ¹¹	JI3 J14 Fre	0.005 J15 J16 Magnette quoticy MELTED	0.001 J18 J20 Porticle & MAN) J24 J28 Inspection <u>Sover</u> J IUFACTU <u>Type</u> Surface	J32 Ly, RED IN	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction 10.4 : f	
0.008 ominy (, Ji J2 Non-Met A Fensile I fensile I	0.0004 ASTM / J3 J4 Initic Init Meth B ' ' Yield 0,2%	A225) J5 J6 clusions C C C es Yield 0.01%	0.0005 J7 J8 (ASTALE D Yield	J9 J10 45) .M Q T H T H Elong % 2 "	J11 J12 ethod C. S Elong % 8 ¹¹	JI3 J14 Fre	0.005 J15 J16 Magnette quoticy MELTED	0.001 J18 J20 Porticle & MAN) J24 J28 Inspection Soveri UFACTU Type Surface Mid	J32 Ly, RED IN RC :	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction 10.4 : f	
0.008 omluy (, J1 J2 Non-Met A Fensile I fensile I	0.0004 ASTM / J3 J4 hallic Ind Meil B Yoperti Yield 0.2% 46600	A225) J5 J6 elusions with <u>C</u> es Yield <u>0.01%</u>	0.0005 J7 J8 (ASTALE D Yield	J9 J10 ,M Q T H T H Elong % 2 " 48.00	J11 J12 ethod C. S Elong % 8 ¹¹	JI3 J14 Fre	0.005 J15 J16 Magnette quoticy MELTED	0.001 J18 J20 Porticle & MAN) J24 J28 Inspection Soveri UFACTU UFACTU Type Surface Mid Core	J32 Ly RED IN	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction 10.4 : f	
0.008 omluy (, J1 J2 Non-Met A Fensile I fensile I	0.0004 ASTM / J3 J4 Initic Init Meth B ' ' Yield 0,2%	A225) J5 J6 elusions with <u>C</u> es Yield 0.01%	0.0005 J7 J8 (ASTALE D Yield	J9 J10 45) .M Q T H T H Elong % 2 "	J11 J12 ethod C. S Elong % 8 ¹¹	JI3 J14 Fre	0.005 J15 J16 Magnette quoticy MELTED	0.001 J18 J20 Porticle & MAN) J24 J28 Inspection Soveri UFACTU Type Surface Mid Core Surface	J32 Ly RED IN	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction 10.4 : f	
0.008 omluy (, J1 J2 Non-Met A Fensile I fensile I	0.0004 ASTM / J3 J4 hallic Ind Meil B Yoperti Yield 0.2% 46600	A225) J5 J6 elusions with <u>C</u> es Yield 0.01%	0.0005 J7 J8 (ASTALE D Yield	J9 J10 ,M Q T H T H Elong % 2 " 48.00	J11 J12 ethod C. S Elong % 8 ¹¹	JI3 J14 Fre	0.005 J15 J16 Magnette quoticy MELTED	0.001 J18 J20 Porticle & MAN) J24 J28 Inspection Sover1 WFACTU Type Surface Mid Core Surface Mid	J32 Ly RED IN <u>RC</u>	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction 10.4 : f	
0.008 ominy (, Ji J2 Non-Mei A Fensile I fensile I fensile 69200 68100	0.0004 <u>ASTM</u> J3 J4 allie In Mell B ' ' ' ' ' ' ' ' ' ' ' ' '	A225) J5 J6 elusions with <u>C</u> es Yield <u>0.01%</u>	0.0005 J7 J8 (ASTALE D Yield	J9 J10 ,M Q T H T H Elong % 2 " 48.00	J11 J12 ethod C. S Elong % 8 ¹¹	JI3 J14 Fre	0.005 J15 J16 Magnette quoticy MELTED	0.001 J18 J20 Porticle & MAN) J24 J28 Inspection Soveri UFACTU Type Surface Mid Core Surface	J32 Ly RED IN <u>RC</u>	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction 10.4 : f	
0.008 ominy (, Ji J2 Yon-Met A Fensile 1 fensile 69200 68100 Charpy	0.0004 ASTM / J3 J4 Allie In Mell B Yield 0.2% 46600	A225) J5 J6 clustons with C es Yield 0.01%	0.0005 J7 J8 (ASTM E P Yield 0.02%	J9 J10 45) .M Q T H T H T H Elong <u>% 2 "</u> 48.00 47.00	J11 J12 ethod C. S Elong % 8 n	JI3 J14 Fre	0.005 J15 J16 Magacite guoiney, MELTED Deca	0.001 J18 J20 Particle & MAN) J24 J28 Inspection Soveri UFACTU Type Surface Mid Core Surface Mid Core	J32 Ly RED IN <u>RC</u>	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction 10.4 : f	
0.008 ominy (, Ji J2 Non-Mei A Fensile I fensile I fensile 69200 68100	0.0004 ASTM / J3 J4 Iallie In Mell B Yield 0.2% 46600	A225) J5 J6 clustons with C es Yield 0.01%	0.0005 J7 J8 (ASTM E P Yield 0.02%	J9 J10 ,M Q T H T H Elong % 2 " 48.00	J11 J12 ethod C. S Elong % 8 n	JI3 J14 Fre	0.005 J15 J16 Magacite guoiney MELTED	0.001 J18 J20 Porticle & MAN) J24 J28 Inspection Soveri UFACTU Type Surface Mid Core Surface Mid Core	J32 Ly RED IN <u>RC</u>	ASTATÈ B C THE USA Have	Gral	0.0070 n Size Reduction 10.4 : f	

•

January 28, 2016

Figure A-9. Splice Plate, Test No. NYT-1

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE **Certified Test Report** Same: Costemer Dicky No Customer Date 4500276050 11/30/2016 05.00X05.00 SPS - New Century 401 New Century Perkway Geuge Delivery No:82853042 NEW CENTURY KS 66031-1127 Land No.3817901 1/4 Secontempe: ASTM A500-13 Gr.B/C 3 Yield Heat No Tensile Elongation % 2 Inch KSI KSI 33.50 A612210 61.5 68.9 NY Box Beam R#17-393

SI

0.0100

0.0050

CU 0.1100

NI

0.0400

CR 0.0900

MO 0.0300

0.0030

This material was melted & manufactured in the U.S.A.

MIN

0.8300

0.0600

Heat No.

A812210

We hereby certify that all test results shown in this report are correct as contained in the records of our company. All testing and manufacturing is in accordance to A.S.T.M. parameters encompassed within the acops of the specifications denoted in the specification and grade tiles above. This product was manufactured in accordance with your purchase order requirements.

This meterial has not come into direct contact with mercury, any of its compounds, or any mercury bearing devices during our manufacturing process, testing, or inspections.

This material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

0.0150

Tensila test completed using test specimen with 3/4* reduced area.

STEEL VENTURES, LLC dba EXLTUBE

Jonathan Wolfa Quality Assurance Manager

Figure A-10. 25¹/₂-in. (648-mm) Long Cut Box Beam, Test No. NYT-

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

40265392-0010 701272120TM

70400.000

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 07/06/2016 TIME 10:30:19 USER WILLIAMR

Ship Date

07/06/2016

S D D O 66031	-1127		S H P T O	13716 Kansas City W 401 New Cent NEW CENTUR	ury Parkway	
Order	Material No.	Description	Quantity	Weight	Customer Part	Customer PO

3/8 72 X 120 A36 TEMPERPASS STPMLPL

33.80

							Chemical Ar	nalysis							
Heat No.	B607172	Vendo	or STEEL DY	NAMICS CC	DLUMBUS		DOMESTIC	N	AIII STEEL	DYNAMICS C	OLUMBUS		Melted and Mai	nufactured in	the USA
Batch 000	04386125	9 EA	8,272.800 L	В										Produced	from Coil
Carbon	Manganese	Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.2000	0.8000	0.0150	0.0020	0.0200	0.0300	0.0700	0.0100	0.0001	0.0800	0.0260	0.0010	0.0040	0.0010	0.0057	0.0040
						Mecha	anical/ Physic	al Prope	rties						
Mill Coil N	lo. 16B62871	6													
т	ensile	Yield		Elong	Rckwl	c	Grain	Charpy		Charpy Dr	Cł	narpy Sz	Tempera	ature	Olsen
712	00.000	45900.000		31.90				0		NA					

9

0

8,272.800

NA

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Figure A-11. ³/₈-in. (9-mm) Bent Plate, Test No. NYT-1

46100.000

SSAB 12400 Highway 43' North, Ax	is, Alabam	a 36505,	, US	Tes	iC			aic				For	rm TC	1: Re	vision	2: Da	ite 23	Apr :	2014	
Customer:				50027290					Mill Or	rder No	o.: 41	-47894	9-02	Sh	nippin	g Mai	nifest	: A7	Г23218	7
STEEL & PIPE SUPPLY P.O. BOX 1688	Product	Descript		STM A36 ASHTO N			5A)36//	ASME SA:	86(15)				Date: Date:						081577 of 1)	993
MANHATTAN KS 66502	<u> </u>	625	v 7'	2.00 2	5 24		(TN)													
Tested Pieces	Size: U		A //	Tensiles					1		Cł	arpy	Impac	t Test	ts					
eat Piece Tested d Id Thickness		Tst Loc (KS		UTS 9 (KSI)		Elong % 2in 8in		Hardness	Abs. 1	Energy 2 3	(FTLB Avg) 1	% Sh 2		Avg	Tst Tmp	Tst Dir	Siz	BDV Tmp	VTT %Shr
159 D51 0.439 (DISC 159 D54 0.756 (DISC	RT)			71 .		24	T							22				<u>(mm)</u>		
				-	Cham	ical An	olucio			2	-									е. 19
Heat Id C Mn P S	Si	Tot Al	Cu	Ni	Crem	Mo	•	v	Ti	B	N			2 						ORGN
									.013	000	11.00	76								
.19 .53 .011 .0 KILLED STEEL MERCURY IS NOT A METALLURGICAL OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION C 100% MELTED AND MANUFACTURED I PRODUCTS SHIPPED:	COMPON	ATE 3. ISA.	F THE		T	105				1			D DU	RING	G THI	e ma	NUF	ACTU	IRE	USA
159 .19 .53 .011 .0 KILLED STEEL MERCURY IS NOT A METALLURGICAL OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION CO 100% MELTED AND MANUFACTURED I PRODUCTS SHIPPED:	COMPON ERTIFIC N THE U	ENT OF	F THE	E STEEL	AND	105				1			D DU	RIN	G THI	e ma	NUF	ACTU	IRE	<u>USA</u>
159 .19 .53 .011 .0 KILLED STEEL MERCURY IS NOT A METALLURGICAL OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION C 100% MELTED AND MANUFACTURED I PRODUCTS SHIPPED:	COMPON ERTIFIC N THE U	ENT OF	F THE	E STEEL	AND	105				1			D DU	RING	Э ТНІ !	E MA	NUF	ACTU	IRE	USA
159 .19 .53 .011 .0 KILLED STEEL MERCURY IS NOT A METALLURGICAL OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION C 100% MELTED AND MANUFACTURED I PRODUCTS SHIPPED:	COMPON ERTIFIC N THE U	ENT OF	F THE	E STEEL	AND	105				1			D DU	RING	3 THI !	e ma	NUF	ACTU	JRE	USA
159 .19 .53 .011 .0 KILLED STEEL MERCURY IS NOT A METALLURGICAL OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION C 100% MELTED AND MANUFACTURED I PRODUCTS SHIPPED:	COMPON ERTIFIC N THE U	ENT OF	F THE	E STEEL	AND	105				1			D DU	RING	Э ТН] !	E MA	NUF	ACTU	IRE	USA
159 .19 .53 .011 .0 KILLED STEEL MERCURY IS NOT A METALLURGICAL OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION C 100% MELTED AND MANUFACTURED I PRODUCTS SHIPPED:	COMPON ERTIFIC N THE U	ENT OF	F THE	E STEEL	AND	105				1			D DU	RING	G THI	E MA	NUF	ACTU	IRE	USA
159 .19 .53 .011 .0 KILLED STEEL MERCURY IS NOT A METALLURGICAL OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION C 100% MELTED AND MANUFACTURED I PRODUCTS SHIPPED:	COMPON ERTIFIC N THE U	ENT OF	F THE	E STEEL	AND	105				1			סם ס	RING	3 TH	E MA	NUF	ACTU	IRE	USA
159 .19 .53 .011 .0 KILLED STEEL MERCURY IS NOT A METALLURGICAL OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION C 100% MELTED AND MANUFACTURED I PRODUCTS SHIPPED:	COMPON ERTIFIC N THE U	ENT OF	F THE	E STEEL	AND	105				1			D DU	RING	3 TH	E MA	NUF	ACTU	JRE	USA

Figure A-12. Keel Plate, Test No. NYT-1

GO GER	DAU	CUSTOMER SH STEEL & PIPE 1003 FORT GI CATOOSA,OK USA	SUPPLY CO INC BSON RD	STEEL &	ER BILL TO PIPE SUPPLY			GRADE A992/A572-50 LENGTH 40'00"		PE / SIZE Flange Beam / 6 X 1 5 WEIGHT 36,000 LB	5# / 150 DOCUI 000007 HEAT / BATCI 59072980/02	7096 H
MIDLOTHIAN, TX 76065 JSA		SALES ORDE 4619506/0000			OMER MATE 0000037615004			SPECIFICATION / 1 ASTM A6-14 ASTM A709-15		ON		
CUSTOMER PURCHASE ORDE G450022037	R NUMBER		BILL OF LADIN 1327-000022067		DATE 01/06/201	7		ASTM A992-11 (2015) CSA G40.21-13 345W1				
CHEMICAL COMPOSITION C Mn 0.08 0.84	р % 0.017	\$ 0.029	Şj 0.21	Cu %	Ni 0.12	Çr 0.23	Mc % 0.03		.0.002	Nb % 0.012	Al % 0.003	
CHEMICAL COMPOSITION CEgyA6 0.30												
MECHANICAL PROPERTIES YS 0.2% PSI 57531 58040	UT PS 751 748	S 1 90 34	YS MPa 397 400		UTS MPa 519 516			Y/T rati 0.765 0.776	8	G/L nch 000 000		
MECHANICAL PROPERTIES G/L mm 200.0 200.0	Elor 25.2 25.0	ıg.										
COMMENTS / NOTES												
			enter en de la tracerte de contra									
								e certify that these da with EN 10204 3.1.	ta are correct and	in compliance with		
specified r	hacke	BHAS QUAL	KAR YALAMANCHILI ITY DIRECTOR nanchili@gerdau.com					Oomilida	QUAL	HARRINGTON ITY ASSURANCE MGR. Harrington@gerdau.com		

Figure A-13. 72¹/₂-in. (1,842-mm) Long Post for HFT Anchors, Test No. NYT-1

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015		METALLURGICAL TEST REPORT	PAGE 1 of 1 DATE 09/02/2016 TIME 10:02:08 USER WILLIAMR
66031-1127		S 13716 H Kansas City Warehouse 401 New Century Parkway NEW CENTURY KS	8
Order Material No. 40269622-0030 70672120TM	Description 3/16 72 X 120 A36 TE	Quantity Weight Customer Part MPERPASS STPMLPL 21 9,651.600	Customer PO Ship Date 09/02/201
Heat No. B610331 Vendor	STEEL DYNAMICS COLUMBUS	Chemical Analysis DOMESTIC Mill STEEL DYNAMICS COLUMBUS	Melted and Manufactured in the USA
Produced from Coil Carbon Manganese Phosphorus 0.0700 0.8400 0.0110	Sulphur Silicon Nickel	0.0000 0.0100 0.0001 0.0000 0.0000	adium Columbium Nitrogen Tin .0030 0.0010 0.0094 0.0040
		Mechanical / Physical Properties	
Tensile Yield 62600.000 45800.000 63200.000 47300.000	Elong Rckwl 32.50 34.50	Grain Charpy Charpy Dr Charpy 5 0 NA 0 NA	Sz Temperature Olsen
Batch 0004452372 21 EA Batch 0004452390 21 EA		Batch 0004452373 21 EA 9,651.600 LB Batch 00044	52389 21 EA 9,651.600 LB
		х ,	
	and and the second s	ED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECO	

Figure A-14. ³/₁₆-in. (5-mm) Plate, Test No. NYT-1

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015				LURGIO			PAC DA TIM USE	TE 12/06 IE 10:57	:45	¥.
s o b d o 66031-1127			S H I P T O	13716 Kansas City 401 New Ce NEW CENTU	ntury Park		•			
Order Material No. 40275640-0020 701672120TM	Description 1/2 72 X 120	A36 TEMPERPASS	Quantity STPMLPL &		Customer	Part	Cu	ustomer PO		hip Date 2/06/20
-			Chemical Analys							
	STEEL DYNAMICS COL	UMBUS	DOMESTIC	MIII STEEL DY	NAMICS CO	LUMBUS	Me	elted and Manu	afactured in	the Us
Produced from Coil Carbon Manganese Phosphorus D.0600 0.8300 0.0090	Sulphur Silicon 0.0050 0.0100	Nickel Chromium		Boron Copper 2001 0.1200	Aluminum 0.0280	Titanium 0.0010	Vanadium 0.0030	Columbium 0.0010	Nitrogen 0.0072	
Carbon Manganese Phosphorus		Nickel Chromium 0.0300 0.0600		0001 0.1200						
Carbon Manganese Phosphorus 0.0600 0.8300 0.0090 Mill Coil No. 168689796	0.0050 0.0100	Nickel Chromium 0.0300 0.0600 Mech	o 0.0100 0.0 nanical / Physical F	0001 0.1200 Properties	0.0280	0.0010	0.0030	0.0010	0.0072	0.00
Carbon Manganese Phosphorus 0.0600 0.8300 0.0090		Nickel Chromium 0.0300 0.0600	o 0.0100 0.0 nanical / Physical F	0001 0.1200 Properties		0.0010			0.0072	۲ 0.00 Ols
Carbon Manganese Phosphorus 0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000	0.0050 0.0100 Elong 39.50 41.50 801.600 LB	Nickel Chromium 0.0300 0.0600 Mech Rckwl Batch 00	o 0.0100 0.0 nanical / Physical F	0001 0.1200 Properties Properties C 0 0 801.600 LB	0.0280 harpy Dr NA	0.0010 Char	0.0030 rpy Sz	0.0010	0.0072	0.00
Carbon Manganese Phosphorus 0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9,8	0.0050 0.0100 Elong 39.50 41.50 801.600 LB	Nickel Chromium 0.0300 0.0600 Mech Rckwl Batch 00	0 0.0100 0.0 nanical / Physical F Grain Ch 004564454 8 EA 9,7	0001 0.1200 Properties Properties C 0 0 801.600 LB	0.0280 harpy Dr NA	0.0010 Char	0.0030 rpy Sz	0.0010 Tempera	0.0072	0.00
Carbon Manganese Phosphorus 0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9,8	0.0050 0.0100 Elong 39.50 41.50 801.600 LB	Nickel Chromium 0.0300 0.0600 Mech Rckwl Batch 00	0 0.0100 0.0 nanical / Physical F Grain Ch 004564454 8 EA 9,7	0001 0.1200 Properties Properties C 0 0 801.600 LB	0.0280 harpy Dr NA	0.0010 Char	0.0030 rpy Sz	0.0010 Tempera	0.0072	0.00
Carbon Manganese Phosphorus 0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9,8	0.0050 0.0100 Elong 39.50 41.50 801.600 LB	Nickel Chromium 0.0300 0.0600 Mech Rckwl Batch 00	0 0.0100 0.0 nanical / Physical F Grain Ch 004564454 8 EA 9,7	0001 0.1200 Properties Properties C 0 0 801.600 LB	0.0280 harpy Dr NA	0.0010 Char	0.0030 rpy Sz	0.0010 Tempera	0.0072	0.00
Carbon Manganese Phosphorus 0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9,8	0.0050 0.0100 Elong 39.50 41.50 801.600 LB	Nickel Chromium 0.0300 0.0600 Mech Rckwl Batch 00	0 0.0100 0.0 nanical / Physical F Grain Ch 004564454 8 EA 9,7	0001 0.1200 Properties Properties C 0 0 801.600 LB	0.0280 harpy Dr NA	0.0010 Char	0.0030 rpy Sz	0.0010 Tempera	0.0072	0.00
Carbon Manganese Phosphorus 0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9,8	0.0050 0.0100 Elong 39.50 41.50 801.600 LB	Nickel Chromium 0.0300 0.0600 Mech Rckwl Batch 00	0 0.0100 0.0 nanical / Physical F Grain Ch 004564454 8 EA 9,7	0001 0.1200 Properties Properties C 0 0 801.600 LB	0.0280 harpy Dr NA	0.0010 Char	0.0030 rpy Sz	0.0010 Tempera	0.0072	0.00

Figure A-15. ¹/₂-in. (12-mm) Plate, Test No. NYT-1

					CEI	RTIFIED MA	TERIAL	TEST REPOR	г						Page 1/1
GÐ	GER	DAU		E SUPPLY CO		CUSTOMER I STEEL & PI		Y CO INC		GRADE A36/A52	9-50		HAPE / SIZE ngle / 3X2X3/8		DOCUMENT 0000022978
JS-ML-JACKS	ON TN		JONESBURG JONESBURG, USA	INDUSTRIAL MO 63351	PARK	MANHATTA USA	AN,KS 665	05-1688		LENGTH 20'00"	I	L	WEIGHT 9,440 LB		T / BATCH 42915/05
801 GERDAU . IACKSON, TN USA		ROAD	SALES ORDE 3810745/0000				1ER MATE 300200122			ASTM AS	CATION / D. 529-14, A572-15 5-14,A36-14, A5	5	VISION		÷.
CUSTOMER PU 4500267405	JRCHASE ORDE	ER NUMBER	1	BILL OF LA 1333-000000			DATE 06/10/201	16		ASTM A	20-13/G40.21-1	O M270-12			
CHEMICAL CON C % 0.14	IPOSITION Mn % 0.67	P % 0.012	\$ 0.038	Şi 0.21	Çu % 0.24	N 9	Vi % 09	Cr %	Mi %		V % 0.021	Nb % 0.002	AI % 0.000	Şn 0.009	
MECHANICAL P Elog 29. 28.	ng. 00	G/ Inc 8.0 8.0	00	20	G/L nm 00.0 00.0		UTS PSI 7330 7322	0		UTS MPa 505 505			YS PSI 53350 54520		
MECHANICAL P Mi 36 37	Sa														
GEOMETRIC CH R:R 17.57	ARACTERISTICS									×					
COMMENTS / NO This grade meets th ASTM Grades: A34 CSA Grades: 44W; AASHTO Grades: SA ASME Grades: SA	e requirements for th 5; A529-50; A572-5 50W M270-36; M270-50														
	specified	e figures are certi requirements. Th MacAke	is material, inclu	Id physical test r Iding the billets, SKAR YALAMANC LITY DIRECTOR	, was melted	ontained in the and manufact	permanent	t records of con USA. CMTR c	npany. W complies	e certify t with EN 1	hat these data 0204 3.1. Juic Eur	where p	and in compliance with RASANN JINTURKAR UALITY ASSURANCE MG6		

Figure A-16. 4.8-in. (122-mm) Long L-Bracket, Test No. NYT-1

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015		TALLURGICAL T REPORT	PAGE 1 of 1 DATE 04/14/2017 ~ TIME 11:14:29 USER WILLIAMR
	New York Box Beam		
S 0 L D 66031-1127	Zig Zag Bracket replacement R#17-670 May2017 SMT	S 13716 H Kansas City Warehouse P 401 New Century Parkway NEW CENTURY KS	
Order Material No. 40283051-0020 701672120TM	Description 1/2 72 X 120 A36 TEMPERPASS STPMLPL	Quantity Weight Customer Part 8 9,801.600	Customer PO Ship Date 04/14/2017
Heat No. 17011041 Produced from Coil Carbon Manganese Phosphorus 0.1800 0.8300 0.0100	Chemical Vendor BIG RIVER STEEL LLC DOMESTIC Sulphur Silicon Nickel Chromium Molybdenum 0.0040 0.0200 0.0300 0.0500 0.0100	Mill BIG RIVER STEEL LLC Boron Copper Aluminum Titanium Vana	Melted and Manufactured in the USA Idium Columbium Nitrogen Tin 0030 0.0000 0.0076 0.0060
	Mechanical / Phy	sical Properties	
Mill Coil No. 17011041-02		Obarran Da Obarran O	
Tensile Yield 76200.000 51600.000 74500.000 49400.000 74800.000 50300.000 77100.000 52800.000	Elong Rckwl Grain 30.30 31.10 30.60 30.00	Charpy Charpy Dr Charpy S 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA	z ² Temperature Olsen
Batch 0004716625 8 EA	9,801.600 LB	2	
	ц в и		

Figure A-17. ¹/₂-in. (12-mm) Box Beam Cable Anchor Base Plate and Mounting Plate, Test No. NYT-1

STEEL AND PIPE SUPPLY

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 04/19/2017 TIME 17:37:34 USER J.DUBOIS

S O L D T O								H W P 10		0020 Gibson Rd OK 7401	5-3033				
Order		Material No.	Descrip	tion			٥	uantity	Weight	t Custome	r Part	c	ustomer PO		Ship Date
4028439	7-0010	70872120TM	1/4	72 X 12	0 A36 TEM	MPERPASS S	TPMLPL	13	7,963.800)					04/19/2017
Produced	<mark>170142</mark> from Coil Manganes	1	Vendor Bi Sulphur	IG RIVER S Silicon	TEEL LLC Nickel	Chromium	Chemical A DOMESTIC Molybdenum	nalysis Boron	Mill Copper	BIG RIVER S	STEEL LLC	M Vanadium	elted and Man Columbium	ufactured Nitrogen	
0.1700	0.800	0.0000	0.0020	0.0200	0.0400	0.0300	0.0100	0.0001	0.1100	0.0260	0.0000	0.0010	0.0000	0.0090	0.0060
						Mecha	nical / Phys	ical Prop	erties						
Mill Coil	No. 170	14221-04													
	Fensile	Yield		Elong	Rckwl		Grain	Charpy		Charpy Dr	Ch	arpy Sz	Tempera	ature	Olsen
	0.000	52700.000		28.30				0		NA					
	0.000	49000.000		32.00				0		NA					
	0.000	52500.000		32.20				0		NA					
6830	0.000	48300.000		33.60				0		NA					
В	atch 0004	735517 13 EA	7,963.800	LB		Batch 000	04735520 13	EA 7,963	.800 LB						

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Figure A-18. ¹/₄-in. (6-mm) Box Beam Cable Anchor Gusset, Test No. NYT-1

<u>Sold</u> t						MAL	1 ESI	REF	ORT						
	0														
		Supply	Comp	an							No	ped to			
PO BC	X 16	88 AN KS 6					125				401 NEV USA	el & Pip New (V CENT	e Supp Century URY K	Parkw S 660	npan ay 031
Material: 7.0x	7.0x37	5x40'0"0(3	3x2).		M	aterial N	o: 7007	0375400	00				: USA		
Sales order:	102783	37			P	urchase (Drder: C	450005:	244	Cust Ma	terial #:	Melted 657003	in: Unite 7540	ed Kingd	om
Heat No	С	Mn	Р	S	Si	Al	Cu	СЬ	Мо	Ni	Cr	v	ті	в	N
85197PT	0.154	1.203	0.013	0.008	0.013	0.047	0.040	0.001	0.001	0.019	0.025	0.001	0.001	0.000	0.00
Bundle No	PCs	Yield		nsile	Eln.	2in				rtification			С	E: 0.37	
M800565200		062149		2854 Psi	34 %		×	A		00-13 GR		C			
Material Note: Sales Or.Note:			*			1						\$			
Material: 7.0x ⁻ Sales order:			3x2).				o: 7007 Drder: C			Cust Ma	terial #:		i: USA in: Unite 7540	ed Kingde	om
Heat No	С	Mn	Р	S	Si	AI	Cu	Cb	Mo	Ni	Cr	v	Ti	в	N
85197PT	0.154	1.203	0.013	0.008	0.013	0.047	0.040		0.001	0.019	0.025	0.001	0.001	0.000	0.00
Bundle No	PCs	Yield		nsile	Eln.					rtification			С	E: 0.37	
M800565201		062149		2854 Psi				A		00-13 GR		0			
Material Note: Sales Or.Note:									240			A. (1997), A. 199	1	er	
Material: 10.0	x4.0x2	50x40'0"0	(2x4).		M	aterial N	o: 1000	402504(000				i: USA in: USA		
	102783	38			P	urchase (Order: C	450005:	244	Cust Ma	terial #:	661000	4002504	0	
Sales order:		Mn	Р	S	Si	AI	Cu	Cb	Mo	Ni	Cr	V	Ti	В	N
Heat No	С			0.008	0.018	0.058	0.020	0.004	0.002	0.010	0.040	0.001		0.000	0.00
Heat No W05669	0.190	0.820	0.013							rtification			С	E: 0.34	
Heat No W05669 Bundle No	0.190 PCs	0.820 Yield	Ter	nsile	Eln.										
Heat No	0.190 PCs 8	0.820 Yield	Ter	nsile			ł			00-13 GR	ADE B&0	3			
Heat No W05669 Bundle No W800572953 Waterial Note:	0.190 PCs 8	0.820 Yield	Ter	nsile			ł			00-13 GR	ADE B&0	2			
Heat No W05669 Bundle No W800572953 Waterial Note:	0.190 PCs 8	0.820 Yield	Ter	nsile			x			00-13 GR	ADE B&0	2			
Heat No W05669 Bundle No W800572953 Waterial Note:	0.190 PCs 8	0.820 Yield	Ter	nsile			X			00-13 GR	ADE B&(2			
Heat No W05669 Bundle No W800572953 Waterial Note:	0.190 PCs 8	0.820 Yield	Ter	nsile			*			00-13 GR	ADE B&G	2			
Heat No W05669 Bundle No M800572953 Material Note:	0.190 PCs 8	0.820 Yield	Ter Psi 080	nsile 0856 Psi	30 %					00-13 GR	ADE B&G	2			
Heat No W05669 Sundle No W800572953 Waterial Note: Sales Or.Note:	0.190 PCs 8	0.820 Yield 067409 I	Ter Psi 080	nsile	30 %					00-13 GR	ADE B&G	2			
Heat No W05669 Sundle No W800572953 Waterial Note: Sales Or.Note: Authorized by The results rej	O.190 PCs 8	0.820 Yield 067409 I 0 Assuranc on this rep	Psi 080	on Rece	30 %		of the m	A	STM A5				e with al	l applical	ble
Heat No W05669 Bundle No M800572953 Material Note:	O.190 PCs 8	0.820 Yield 067409 I 067409 I of this representation of this representation of the set	Psi 080	onsile 0856 Psi our Rice esent the	30 %		of the m	A	STM A5				e with al	l applical	ble

Figure A-19. 48-in. (1219-mm) Long Box Beam, Test No. NYT-1

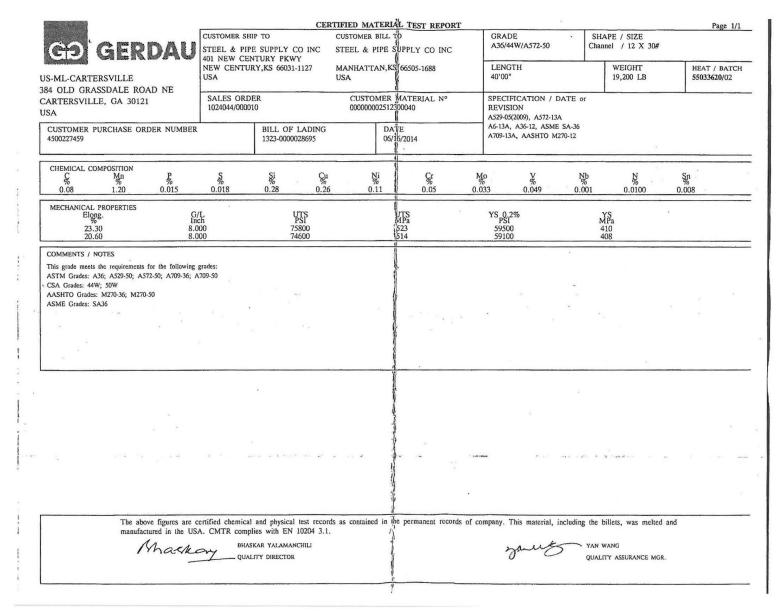


Figure A-20. 24-in. (610-mm) Long C-Channel, Test No. NYT-1

NAMES OF TAXABLE AND DESCRIPTION OF TAXABLE AND DESCRIPANTE AND DESCRIPTION OF TAXABLE AND DESCRIPTION				CERT	TIFTED MA	TERIAL T	TEST REPOR	Г						Page 1/1
CO CEDD		CUSTOMER SHIP STEEL & PIPE S			CUSTOMER B STEEL & PH		Y CO INC		GRADE GGMULT	F1		APE / SIZE gle / 3X3X1/4		DOCUMENT ID: 0000055229
GÐ GERD	AU	401 NEW CENT	URY PKWY						LENGTH			WEIGHT	lumu	
US-ML-JACKSON TN		NEW CENTUR	1,63 00031-112		MANHATTA USA	111,100 000	03-1088		40'00"			WEIGHT 39,200 LB		7/BATCH 4478/02
801 GERDAU AMERISTEEL ROA JACKSON, TN 38305	D	SALES ORDER				ER MATE			SPECIFIC	CATION / DA	TE or REVIS	SION		
USA		4543916/000100)		00000005	030030084	ю			29-14, A572-15 -14,A36-14, ASI	AE SA-36			
CUSTOMER PURCHASE ORDER NU G450021852	JMBER		BILL OF LAD 1333-00000767			DATE 12/09/201	6			09-15, AASHTC 20-13/G40.21-13				
CHEMICAL COMPOSITION C Mn 0.13 0.69 0	P. .010	\$ 0.031	Şi 0.22	Çu % 0.28	N 0.1		Cr % 0.10	M % 0.0	0 31	V % 0.021	ŊЪ % 0.000	Al % 0.001	Şп 0.011	
MECHANICAL PROPERTIES			0.5		-									
Elong. 30.00 30.00	G/ Inc 8.0 8.0	00	G/L mm 200. 200.	0		UTS PSI 75050 75150	0		UTS MPa 517 518		5	YS PSI 5200 5490		
MECHANICAL PROPERTIES YS MPa 387 389		2002 T												
GEOMETRIC CHARACTERISTICS R:R					***									
21.16														
COMMENTS / NOTES					an a					and strate				
This grade meets the requirements for the follo ASTM Grades: A36; A529-50; A572-50; A70 CSA Grades: 44W; 50W AASHTO Grades: M270-36; M270-50 ASME Grades: SA36-13														
		P Marcoras												
The above figu specified requi	ires are certi rements. Th	ified chemical and is material, includ	physical test rec ling the billets, w	ords as cor as melted a	ntained in the and manufact	permanent	t records of con USA. CMTR of	pany. W	e certify tha with EN 102	t these data are 204 3.1.	e correct and	n compliance with		
M	arka	n	CAR YALAMANCHII	l					-8	Juiten		NN ЛNTURKAR TY ASSURANCE MGR.		
Phone: (409)) 769-1014 E	imail: Bhaskar.Yalan		m					Phone: (7	731) 423-5256		Jinturkar@gerdau.com		

Figure A-21. 18-in. (457-mm) Long and 6¹/₂-in. (165-mm) Long L-Bracket, Test No. NYT-1

				CERTIF	FIED MATERIAL	TEST REPORT						Page 1/1
GÐ GER	DAU	CUSTOMER SI STEEL & PIF JONESBURG	HIP TO PE SUPPLY CO INC INDUSTRIAL PA	CU: CU:	STOMER BILL TO EEL & PIPE SUPP		GRAI GGM	ULTI		IAPE / SIZE gle / 3X3X1/4		DOCUMENT I 0000077557
US-ML-JACKSON TN 301 GERDAU AMERISTEEL		JONESBURG USA	6,MO 63351	MA US	ANHATTAN,KS 6 A	6505-1688	LENC 40'00			WEIGHT 9,800 LB		Г/ВАТСН 1 0444/ 02
IACKSON, TN 38305 USA	, KOAD	SALES ORD 4964256/000			CUSTOMER MA' 000000050300300		ASTM	IFICATION / D. A529-14, A572-1 A6-14, A36-14, A	5 SME SA-36	ISION		
CUSTOMER PURCHASE ORD G450022859	ER NUMBER	oo to godin	BILL OF LADI 1333-00000833		DATE 04/11/2	017		A709-15, AASHT 40.20-13/G40.21-			<u></u>	
CHEMICAL COMPOSITION C Mn % % 0.15 0.58	P 0.010	\$% 0.029	Şi 0.20	Си % 0.26	Ni % 0.09	Çr 0.10	Мо % 0.030	V % 0.021	Nb % 0.002	Al % 0.001	Şn % 0.009	
MECHANICAL PROPERTIES Elong. 28.00 29.00	8	G/L nch .000 .000	G/L mm 200. 200.	0	U 73: 73:		UT MI 50 51	5		YS PSI 52870 53880		
MECHANICAL PROPERTIES YS MPa 365 371												
GEOMETRIC CHARACTERISTIC R:R 21.16	3									201 U U		7. 1993
COMMENTS / NOTES This grade meets the requirements for ASTM Grades: A36, A529-50; A572 CSA Grades: 44W; 50W AASHTO Grades: M270-36; M270-5 ASME Grades: SA36-13	-50; A709-36; A70											
specifi	ed requirements.	This material, in	and physical test rec cluding the billets, w HASKAR YALAMANCHI	as melted an	ained in the permar ad manufactured in	tent records of conthe USA. CMTR of	npany. We certif complies with E	N 10204 3.1.	are correct an 34 W BEN	d in compliance with		
	Shark	ory_0	and the second second									

Figure A-22. 56-in. (1,422-mm) Long L-Bracket, Test No. NYT-1

GÐ GERDAU		RPORATION	CUSTOMER	CORPORATION		GRADE BVB-GR		SHAPE / SIZ	32"	Page 1/1
S-ML-BEAUMONT 00 OLD HIGHWAY 90 WEST	VAN BUREN, USA	AR 72956-6319	AKRON,O USA	H 44333-3326		LENGTH		WEIGH 17,150		HEAT / BATCH 53139015/05
TDOR, TX 77662 ISA	SALES ORDEI 3057046/00003			MER MATERIAL Nº 0 K02C 000 550 GS-10-	2099-BCQ	SPECIFICATIO	N / DATE or R	EVISION		
CUSTOMER PURCHASE ORDER NUMBER 2010499868-J		BILL OF LADING 1320-0000040803		DATE 12/18/2015						
CHEMICAL COMPOSITION C Mn P 0.6775 0.68 0.009	\$ 0.012	Şi 0.23	Çu % 0.12 (Ni Çr % 0.10 0.05	M % 0.0	o Sn 28 0.00	5 0.0	03 0.	N 0068	
MECHANICAL PROPERTIES Std Dev. R// PSI 3075 4	% ^{Avg}	YIS		MFS						
COMMENTS / NOTES NO WELD REPAIRMENT PERFORMED. STEEL NO BEKAERT SAP NO. 1025346	T EXPOSED TO ME	147468		1017						
COMMENTS / NOTES		147468	и И И и	1017						
COMMENTS / NOTES		147468		1017						
COMMENTS / NOTES		147468		1017						
COMMENTS / NOTES		147468		1017						
COMMENTS / NOTES NO WELD REPAIRMENT PERFORMED. STEEL NO BEKAERT SAP NO. 1025346	T EXPOSED TO ME	147468 RCURY.		the permanent records of						

Figure A-23. ¾-in. (19-mm) Guardrail Cable, Test No. NYT-1

GÐ GERDAU	CUSTOMER S BEKAERT C 2020 RIVERS	HIP TO ORPORATION	ERTIFIED MATERIAL TEST REPORT CUSTOMER BILL TO BEKAERT CORPORATION 3200 W MARKET ST	GRADE BVB-GR		PE / SIZE Rod / 7/32"	Page 1/1
US-ML-BEAUMONT 100 OLD HIGHWAY 90 WEST	VAN BUREN USA	N,AR 72956-6319	AKRON,OH 44333-3326 USA	LENGTH		WEIGHT 17,022 LB	HEAT / BATCH 53139021/07
VIDOR, TX 77662 USA	SALES ORD 3057046/000		CUSTOMER MATERIAL Nº 1101120 K02C 000 550 GS-10-2099-BC		SPECIFICATION / DATE or REVISION		
CUSTOMER PURCHASE ORDER NUMBER 2010499868-J		BILL OF LADING 1320-0000040803	DATE 12/18/2015				*
СНЕМІСАL COMPOSITION С Мп В 0.7275 0.56 0.009	5 0.010	Şi Çi 0.17 0.1	u Ni Çr % %	Mo Sp 0.030 0.005	у 0.003	B 0.0050	N. 0.0064
MECHANICAL PROPERTIES Std. Dev. R/. PSI 972	Avg %	UTS PSI 148763	UTS MPa 1026				1
NO WELD REPAIRMENT PERFORMED. STEEL NO BEKAERT SAP NO. 1025346	T EXPOSED TO N	MERCURY.					
	T EXPOSED TO M	MERCURY.					
	T EXPOSED TO N	AERCURY.					
	T EXPOSED TO N	AERCURY.					
	T EXPOSED TO M	AERCURY.					
BEKAERT SAP NO. 1025346	entified chemical This material, inc	and physical test records a	as contained in the permanent records of compar- sited and manufactured in the USA. CMTR com-	ny. We certify that these data an uplice with EN 10204 3.1. Semawark Fielden & J	La LEONA		

Figure A-24. ¾-in. (19-mm) Guardrail Cable, Test No. NYT-1

BENNETT	BOLT	WORKS.	INC.
	DULI	n orano,	11.0.

12 Elbridge Street P.O. Box 922 Jordan, New York 13080

PH 315-689-3981 FX 315-689-3999

CERTIFICATION OF COMPLIANCE

Customer:

2

2

Midwest Machinery & Supply Co P.O. Box 703 Milford, NE 68405

We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, process requirements, and inspection requirements as required by the purchase order and applicable specifications. R#17-505

Customer P.O. No .:	3410	NY Box Beam BCT Cables
Date Shipped: Invoice No.:	03/02/17 5038896	Orange Paint March 2017 SMT
Purchase Date:	03/06/17	

QUANTITY DESCRIPTION

- 3/4 x 77 1/16" BCT Wire Rope HDG-A153 (Colorguard Rail/AZZ Galv)
- 3/4 x 166 11/16" BCT Wire Rope HDG-A153 (Colorguard Rail/AZZ Galv)

All manufacturing processes for this steel have occurred in the USA. This material is in compliance with domesticity requirements, and conforms to ASTM & AASHTO specifications for standardized highway barrier rail and hardware.

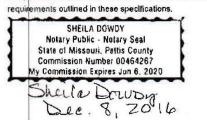
Rock I Vener

Kirk Weaver Manufacturing Manager Date: 03/02/17

Figure A-25. ³/₄-in. (19-mm) Wire Rope, Test No. NYT-1

WireCo[®] WorldGroup

24150 Oak Grove Lane Sedalia MO. 65302-0644 660-829-6721(P) 660-829-6780(F) Date: Sold to: Order:


The Commercial Group 12801 Universal Drive Taylor, MI 48180 192336

12/7/16

Certificate of Compliance

Report of Chemical Analysis and Physical Tests

	1	Tensile Stre	ngth		Torsio	n					
Item			Lbs. per	Wt.	Test	Heat					
No.	Description	Lbs.	sq. in.	Coat	8"	No.	C	Mn	P	S	Si
001	.0395" Galvanized Wire					and the second se					
	.0395	330	269,000	.416	77	15R581840	.82	.59	.008	.009	.18
8	.0395	344	281,000	.547	73	15R582088	.83	.58	.015	800.	.22
						14R575264	.80	.53	.007	.007	.23
						15R577383	.80	.74	.006	.005	.26
	.0395	325	265,000	.522	93	15R581840	82	.59	.008	.009	.18
	.0395	327	267,000	.444	77	15R583009	.80	.57	.016	.003	.21
						15R582607	.81	.56	.007	.005	.20
	.0395	343	280,000	.396	72	15R583009	.80	.57	.016	.003	.21
						15R581840	.82	.59	.008	.009	.18
						15R582807	.81	.56	.007	.005	.20
002	.0460" Galvanized Wire			1	1						1000
	.0460	462	278,000	.448	76	14R571205	82	.54	.007	.006	.21
	.0460	450	271,000	.423	77	15R583009	.80	.57	.016	.003	.21
				1	1.1	15R582088	.83	.58	.015	.008	22
	.0460	422	254,000	.429	71	158581840	.82	.59	.008	.009	.18
003	.0540" Galvanized Wire						1			1	100
	.054	605	264,000	.460	60	15R581840	.82	.59	.008	.009	.18
	.054	606	265,000	.423	57	15R582088	.83	.58	.015	.008	.22
						15R581840	.82	.59	.008	.009	.18
	.054	618	270,000	.451	57	15R582088	.83	.58	.015	.008	22
	.054	610	266,000	.424	71	15R583009	.80	.57	.016	003	.21
	.054	615	269,000	.417	66	14R574048	.80	.53	800.	.004	.18
004	.0610" Galvanized Wire						1				1 man
	0.051	749	256,000	.462	61	15R581840	.82	.59	.008	.009	.18
					1	15R582607	.81	.56	.007	.005	.20
	0.081	757	259,000	523	60	15R581639	.81	.57	.008	.011	17
						15R581452	.80	1.51	009	.00B	.19
	0.061	739	253,000	.481	55	15R581840	.82	.59	.008	.009	18
					1	15R581452	.80	.51	.009	.008	.19
	0.061	812	278,000	.399	45	14R571682	.82	60	.008	.004	.25

Signed:

N ichin

Page 2 of 2

Figure A-26. ¾-in. (19-mm) Wire Rope, Test No. NYT-1, Cont.

4	BUCK CO	MPANY, II	NC
		Quarryville, PA 1756	
		114 Fax (717) 284-43	
	www.buckcompany.com	greatcastings@bu	
	MATERIAL CER		
Date 43014		For	m# CERT-7C Rev A 4/21/06
CUSTOMER: Ber	mett Bolt		
ORDER NUMBER	10011934	-	
PATTERN NUMBER	61W482	-	
This is to certify that th in all respects with the drawing Assurance requirements and / d accepted. SPC data is on file an	or supplementary Quality Ass	I Quality Assurance urance provisions h	provisions and / or Quality
Type Material:	1 Juchle	ron .	26°
Specifications:	ASTM- AS	<u> 34 — </u>	and species
Grade or Class:	65-45-	2	
Heat Number:	DA9		
MECHANICAL PROPERTY	i i i i i i i i i i i i i i i i i i i	HCAL ANALYSIS	8
Tensile Str. PSI	300 Silicor	Carbon <u>3.8</u> 2	<u>9</u>
Yield Str. PSI 50,7	<u>OO</u> Sulfur	anese <u>3</u>	2
Elongation 12	Phosp Chron Magn	horus . C. ie . C.	<u>22</u> 55 8
PHYSICAL PROPERTIES	Coppe		56
Brinell Hardness	96		
PCS SHIPPED 23	16	DATE SHIPPED	42914
(OF (LOUI	t loor
Construction of the second		Quality Ass	surance Representative

Quality Castings ISO 9001: 2008 CERTIFIED Ferritic and Pearlitic Malleable Iron, Gray and Ductile Iron, Brass, Aluminum

Figure A-27. Bennett Cable End Fitter, Test No. NYT-1

V J	BUCK COM	IPANY, INC.
	897 Lancaster Pike, Qua	arryville, PA 17566-9738
	Phone (717) 284-4114	Fax (717) 284-4321
ww	w.buckcompany.com	greatcastings@buckcompany.com
Date 4/30/14 MA	TERIAL CERTI	
DateR		Form# CERT-7C Rev A 4/21/06
CUSTOMER:	HT DOIT	
ORDER NUMBER	011934	1.
PATTERN NUMBER <u>CC</u>	51W484	
This is to certify that the cas	ings listed conform to the fo	ollowing specifications and comply
Assurance requirements and / or sup accepted. SPC data is on file and av	plementary Quality Assura	vuality Assurance provisions and / or Quality ince provisions have been completed and al. & Manufactured in the USA.
Type Material:	Dictile In	<u>n</u>
Specifications:	ASTM-A53	
Grade or Class:	65-95-12	
Heat Number:	DAT	
MECHANICAL PROPERTIES		JAL ANALYSIS
Tensile Str. PSI	Total Car Silicon	<u> </u>
Yield Str. PSI 46, 60		.013
Elongation18	Phosphor Chrome	
PHYSICAL PROPERTIES	Magnesiu Copper <u>i</u>	
Brinell Hardness 179		
PCS SHIPPED 1, 892	 D/	ATE SHIPPED 429/14
1		Dita 100
OF	_	Quality Assurance Representative

Quality Castings ISO 9001: 2008 CERTIFIED Ferritic and Pearlitic Malleable Iron, Gray and Ductile Iron, Brass, Aluminum

Figure A-28. Bennett Cable End Fitter, Test No. NYT-1

A REAL PROPERTY AND A REAL TTML ENSILE TESTING METALLURGICAL LABORATORY

A DIVISION OF J.T. ADAMS CO., INC.

4520 WILLOW PARKWAY CLEVELAND, OHIO 44125 PHONE (216) 641-3290 FAX (216) 641-1223 www.tensile.com

		- CERTIFIEI	DIESTRE	PORt		
Ken Forging 1049 Griggs Roa Jefferson OH 4				Date:	1507-14-0 8-21-15 013384-40	
Attn: Chris Dewe	ey .					
Description:	TB108-J-Bla	nk 3/4"-10	x 12" Turnb	uckle Body Blan	k	
Material:	1035	Heat# 1	45050	Heat Code: S1		
Spec:		-04(09) Class A per Ken Forge D	WR-0018			
		TEST	RESULTS			
Requirements (Min.):	<u>Tensile, ksi</u> 47	<u>Yield, .2% ksi</u> —	Elong., %	in 4D Red. C	f Area, %	<u>*Hardness, HBW</u> 235 Max.
	111	71.5	20		48	223
	Test	Method; ASTM A3	70-14, *Conver	ted from HRBW		
	Product An	alysis of Elemen	ts in % (OE	S per TTML C-	01J):	
			Actual	Requireme		
	Carbon	4				
	Manganese		0.34 0.77	0.32-0.38 0.60-0.90		
	Phosphorus					
	Sulfur		0.012 0.032	0.030 Max 0.050 Max		
	Silicon		0.032	N/A	. .	
	Chromium		0.15	N/A		
	Nickel		0.08	N/A		
	Molybdenum		0.02	N/A		
	Columbium		0.005	N/A		
	Aluminum		0.002	N/A		
	Copper		0.27	N/A		
	Vanadium		0.04	N/A		
	Titanium		0.002	N/A		
	The	e above conform	s to specifica	ations listed.	~ ~	
			11	Tull 91	and an	
			feet	Authorize	d Agent	

Authorized Agent

Page I of 2 This Report May Not Be Reproduced Except In Full This report represents Tensile Testing interpretation of the results obtained from the test and is not to be construed as a Guaranty or Warranty of the condition of the materials tested. Tensile Testing shall not be held liable for misinterpretation of conditions, loss, damage, Injury or death arising from or attributable to delay preceding a test or subsequent to performance of a test.

Figure A-29. Bennet Threaded Turnbuckle, Test No. NYT-1

/ Careford and the second	a /
TTML	TENSILE TESTING

A DIVISION OF J.T. ADAMS CO., INC.

4520 WILLOW PARKWAY CLEVELAND, OHIO 44125 PHONE (216) 641-3290 FAX (216) 641-1223 www.tensile.com

	(dž	RYFIED TEST RE	PORT	and a second
Ken Forging 104 <u>9</u> Griggs Road Jefferson OH 4404 Attn: Chris Dewey	7		Job No.: Date: Cust. PO#:	1507-14-0723 8-21-15 013384-40
Description:	TB108-J-Blank	3/4"-10 x 12 Tumbu	ckie Body Blank	
Material:	1035	Heat# 145050	Heat Code: SI	
Spec:	ASTM F1145-05(11)			
		TEST RESULTS	************	

Requirements (Min.):

Breaking Strength, lbs 20,000 40,000

Break Location: No Fracture

The above conforms to specifications listed.

Malal Authorized Agent

Page 2 of 2
This Report May Not Be Reproduced Except In Full
This report represents Tensile Testing interpretation of the results obtained from the test and is not to be construed as a Guaranty or
Warranty of the condition of the materials tested. Tensile Testing shall not be held liable for misinterpretation of conditions, loss,
damage, injury or death arising from or attributable to delay preceding a test or subsequent to performance of a test.

Figure A-30. Bennet Threaded Turnbuckle, Test No. NYT-1, Cont.

2801 Dawson Rd Tulsa, OK 74110 www.thecrosbygroup.com

Certificate of Conformance

Certificate Number:	CC1-2017040700802
Location of Issue:	Crosby
	2801 Dawson Rd
	Tulsa, OK 74110 USA
	Phone: 918-834-4611 Fax: 918-832-0940
	1000514
Stock No:	1032714
Description of Gear:	HG228 3/4X12 Jaw & Jaw Turnbuckle
Working Load Limit:	5,200 lbs Max. Allowed Proof Load: 13,000 lbs
Comments:	Ultimate load is 5 times the WLL
Note:	Meets the performance requirements of Federal Specification ASTM F-1145, except
	for those provisions required of the contractor.
	Meets or exceeds all requirements of ASME B30.26
	Has not been contaminated by Mercury or Asbestos in the manufacturing process.
Number of Pieces:	2
	Generic certificate based on item being the Crosby product described above.

We hereby certify that the above described material was manufactured and processed in a manner compatible to meeting the load ratings when used under normal and proper applications.

Mentioned products are in conformity to the Crosby literature available at time of manufacturing, including the following trademarked features:

For Product Delivered To: MIDWEST UNLIMITED 1750 W. O Street LINCOLN, NE 68528 USA

Date: April 07, 2017 Date of Issuance

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV = ISO 9001:2008 =

Signature:

Donna DeWitt, Crosby Director of Quality

Figure A-31. Crosby Jaw, Test No. NYT-1

K.J	BUCK	COMPANY	, INC.
	897 Lancaster H	Pike, Quarryville, PA	17566-9738
	Phone (717) www.buckcompany.com	284-4114 Fax (717) greatcasting	284-4321 s@buckcompany.com
t .	MATERIAL C	FDTIFICAT	TON
Date 42814			Form# CERT-7C Rev A 4/21/06
CUSTOMER:	nett Buit		
ORDER NUMBER	6011934	£9,	
PATTERN NUMBER	MA Wedge	1	
This is to certify that in all respects with the drawi Assurance requirements and accepted. SPC data is on file	the castings listed conform ngor officient requirement / or supplementary conflit and available aportoring	to the following spe is. All Quality Assu setsurence provisi districtions. Manuf	cifications and comply ancoprovisions and / or Quality and have been completed and stured in the USA.
Type Material:	Malta 11	TADA	
Specifications:	ASTM - A		
Grade or Class:	3251		
Heat Number:	DAG		
MECHANICAL PROPER		HIMICAL ANAL	
Tensile Str. PSI 53	665	om Carbon	.54
Yield Str. PSI 35, C) <u>31</u> % s	langanese	
Elongation/ 4		hosphoras · hrometic ·	039
PHYSICAL PROPERTIE		opper sum	313
Brinell Hardness	26		ыл, 19
PCS SHIPPED	1,698	DATE SHIP	PED 4/25/14
OF		Quali	Suta LOB ty Assurance Representative

Quality Castings ISO 9001:2008 CERTIFIED Ferritic and Pearlitic Malleable Iron, Gray and Ductile Iron, Brass, Aluminum

Figure A-32. Cable Wedges, Test No. NYT-1

SOLD BENNET	T BOLT WORKS INC	NUCI			CERTIFIE	D MILL:	TEST	REPORT		Page:	1
TO: JORDAN	IDGE ST , NY 13080-0000 T BOLT WORKS INC IER PICK-UP , NY 13080-0000	BAR MILL NUCOR ST	GROUP	JRN, INC.	Ship from: Nucor Ste 25 Quarry Auburn, N 315-253-4	el - Auburr Road Y 13021				Date: Number: 3 Number:	365821
Material Safety Dat	a Sheets are available at www.nucorl	par.com or by contacti		ales representative CAL TESTS	21					Salara and an ar	G-08 March
HEAT NUM. *	DESCRIPTION	YIELD P.S.I.		LONG BEND	WT%	C Ni	Mn Cr	PMo		SiCb	Cu
PO# => AU0810817802 AU08108178A	75989 Nucor Steel - Auburn Inc 3/4 Rd 20 A576 GR 1045 ASTM A576-90b(2006) GR 1045	õ			<u> </u>	.49 .09	.77 .10	.009 .025 0	.031 .00	.22 .001	.35
	T THE ABOVE FIGURES ARE CORRECT AS CO PROCESSES OF THE STEEL MATERIALS IN TH RED WITHIN THE UNITED STATES, ALL PROD			TION.						1.1.	hi

December 16, 2020 MwRSF Report No. TRP-03-391-20

GERDAU EPECIAI, STEEL NORTH AMERICA 5591 Morrill Road Jackson, Michigan 49201

CUPTONER OFFICE MOMENT	H1625RCH2	000MOD2		7506	3022	303022		5/31/16
REPORT TO ROB NEW DIMENSION 3050 DRYDEN RD AUTIN PHIL RUST DAYTON , OH 45	METALS CORP			210m	MENSION	N METALS ROAD		<u></u>
ORADN			RDBRBD			LEM	7.8	1.0.0
1035	1	5/8"	RN			20'		
ASTM A576; VD; A	LUM FG							
		CHEMICA	L ANALY	\$15				
C Mn	P S	Si	Ni	Cr	Mo	Cu	Sn	Al
0.34 0.88	0.012 0.02	0.22	0,13	0.13	0.04	0.11	0.008	0.024
V Nb								
0.000 0.002								
GRAIN SIZE	SPECIFIC	ATION ASTM	1 E 112	FIN	E GRAI	N 5-8		
HARDNESS	SPECIFIC	ATION ASTN	E10	AS	ROLLED			
MIKDW655	br bett i e							
			2	186.0				
MICROCLEANLINESS	SPECIFIC	ATION ASTN	4 845 MI	тн а				
	A B	(D				
т	н т	н т	н	тн	-			
AVERAGE 1.6	0.6 1.0	0.0 0.5	0.0	L.O U.:	5			
We certify that	these data a	re correct	and in c	ompliand	e with	specified	d requir	rements :
Gerdau Monros	Anter Alger per la companya de la co					Aunder	Cubras Frit	-
3000 East Front Str	eșt			Sec. 1	,	1 1		

Figure A-34. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1

GERDAU SPECIAL STEEL NORTH AMERICA 5591 NORRILL ROAD JACKSON, MICHIGAN 49701

CHITOMET DEDALT AURILL	CERTIFIED MATERIA	AL TEST REPORT		and
297134	HIGTERCHICOCOMORA	AREA PERSONAL		1111
	H1625RCH2000MOD2	75063022	303022 101	5/31/16
REPORT TO		210mm Bil		
ROB		6117	70	
NEW DIMENSION	METALS CORP	NEW DIMENCE	ON METALS CORE	
3050 DRYDEN RI		NEW DIMENSI	IN METALS CORE	
ATTN PHIL HUST	FON	3050 DRYDEN	ROAD	
DAYTON , OH 45	5439	DAYTON , OH	45439	
	00000			
GRADE	ORDER	(SD)	LENGTH	
1035	1 5/8"	RND	201	
the second second	CUSTORES FFECT	FICATIONS	-	(Inderstation)
ASTM AS76; VD; 1	ALUM FG			
PHYSICALS	SPECIFICATION ASTM E8/	370 AS ROLLE	0	
	02.	.0 IN		
TENSILE KST	YIELD KSI & ELONO	ATTON REDUCT	ION OF AREA	
THOTON MIT			IN OF BREA	
92.0	50.5 21.	.0	37.0	
DI CALCULATION	SPECIFICATION CAT 1824	4		
1.30				
DECARB	SPECIFICATION ASTM BIG	077		
-				
F	TOTAL= 0.014			
REDUCTION RATIO				
HEADING TOUTA				
RATIO= 32.8 TO	1,0			
	MELTED AND MANUFACTURED I ND CONTINUOUS CASTING MES			
	BY WELDING AND THIS MA			
	TO ANY OTHER METAL ALLO			
	URING PROCESSING OR WHILE			
	S ALL INCOMING SCRAP AND			THAT
CALCULA INVITUN				- 107.1
51 CT 6				
We certify that	these data are correct and 1	n compliance with	aned fled remut	rementa
and the second		a confictance Arch.	appointed rodat	a xup y sp i
Gerdau Monroe 3000 Bast Pront Stre		adver a	Gundand. and	
Monroe, MI 48161			2 /	
CONTINUED ON PAGE 3	the second se		cellity Lesurence Legresent	

Figure A-35. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1, Cont.

GERDAU SPECIAL STEEL NORTH AMERICA 5591 MORTILL ROAD JACKSON, MICHIGAN 49201

CERTIFIED MATERIAL TEST REPORT

3050 DRYD ATTN PHIL DAYTON , 00000 15V41	sion metal: En RD Huston	0 31/32"	ordered RND	210mm NEW DIM 3050 DR	074 3 Billet MIP TO ENSION YDEN RO , OH 45	metals Dad	CORP	/16/16
ROB NEW DIMEN 3050 DRYD ATTN PHIL DAYTON , 15V41	EN RD HUSTON OH 45439	0 31/32"	ordered RND	NEW DIM 3050 DR	AND TO ENSION YDEN RO , OH 45	Metals Pad 439		
NEW DIMEN 3050 DRYD ATTN PHIL DAYTON , 15V41	EN RD HUSTON OH 45439	0 31/32"	ordered RND	3050 DR	YDEN RO , OH 45	0AD 6439		
3050 DRYD ATTN PHIL DAYTON , 00000 15V41	EN RD HUSTON OH 45439	0 31/32"	ordered RND	3050 DR	YDEN RO , OH 45	0AD 6439		
ATTN PHIL DAYTON , 15V41	HUSTON OH 45439	0 31/32" CUAT	I ORDERED RND		, OH 45	439		
DAYTON ,	ОН 45439	0 31/32" CUAT	I ORDERED RND		, OH 45	439		
0MDF 15V41		0 31/32" CUAT	ORDERED RND	NOTYAC	<u></u>			
15V41	ard load H	0 31/32" CUAT	RND	1		LENGY		and the second second
15V41	ARD LOAD H	0 31/32" CUAT		1			~	
PER STAND	ARD LOAD H				32		~	
		IGH- UBOLT 8 5	PEC. DTD	And the second state of th				a constituente
		CHEMIC	al Analys	IS				
					11040000000			
C	Mn P	s si	Ni	Cr	Mo	Cu	Sn	Al
0.43 1.	49 0.010	0.024 0.33	0.11	0.08	0.02	0.16	0.010	0.024
v	Ti. Nb	N						
0.069 0,	014 0.002	0.0100						
GRAIN SIZE	SPE	CIFICATION AST	M E112	FINE	GRAIN	5-8		
HARDNESS	SPE	CIFICATION AST	M E10	AS R	OLLED			
				RFACE 86.0				
MICROCLEANLIN	ess spe	CIFICATION AST	IM E45 MET	A H				
	A	в	С	D				
	т н	т н т		B				
AVERAGE	1.0 0.3	1.0 0.0 0.1	. 0.0 1.0	0.5				

Figure A-36. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1

.

GERDAU SPECIAL STEEL NORTH AMBRICA 5591 HORRILL ROAD JACKSON, MICHIGAN 49201

CERTIFIED MATERIAL TEST REPORT

CUSTOMER ORDER MUMBER	H0968RSA3200	75062074	WORK OKPER HUMPAR 300927 101					
63411	NU906RBA3200	75062074 300927 101 3/16/16 210mm Billet						
BEFORT TO		SALA	*0					
ROB NEW DIMENSION 3050 DRYDEN RE		NEW DIMENSIC	ON METALS CORP	>				
ATTN PHIL HUST		3050 DRYDEN	ROAD					
Dayton , oh 45	439	DAYTON , OH	45439					
na an a	the state of the s	DERED						
15V41	0 31/32 ^µ	RND	32 '					
PER STANDARD L	OAD HIGH- UBOLT 8 SPEC	C. DTD 8/16/13						
PHYSICALS	SPECIFICATION ASTM I	8/A370 AS ROLLEI	>					
		0.0 IN						
TENSILE KSI	YIELD KSI % ELC	DNGATION REDUCT	ION OF AREA					
131.1	89.4 1	15.0 4	1.1					
I CALCULATION	SPECIFICATION CAT 1	30024						
2.69								
BCARB	SPECIFICATION ASTM F	1077						
F	TOTAL= 0.008							
REDUCTION RATIO								
RATIO 92.5 TO	1.0							
ARC FURNACE AN BEEN REPAIRED TO MERCURY OR TEMPERATURES DU	ELTED AND MANUFACTURED D CONTINUOUS CASTING M BY WELDING AND THIS TO ANY OTHER METAL AI RING PROCESSING OR WHI ALL INCOMING SCRAP AN	METHOD. THE PRODU MATERIAL HAS NOT LOY THAT IS LIQUI LLE IN OUR POSSESSI	NCT HAS NOT BEEN EXPOSED D AT AMBIENT CON.	THAT				
PAGE 2 We certify that t	hese data are correct and	i in compliance with a	specified requi:	rements.				
Jerdau Monroe			Alunder anno					
0000 East Front Stree	et		yourday. and Fre	**				
Monroe, MI 48161		- Cur	Ilty Assurance Represente	ab I can				

Figure A-37. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1, Cont.

GERDAU SPECIAL STEEL NORTH AMBRICA 5591 MORRILL ROAD JACKSON, MICHIGAN 69201

CERTIFIED MATERIAL TEST REPORT

3050 DR ATTN PH	PORTON I YDEN RD IL HUSTON , OH 450	METALS	SERSA320			2: New	DIMENSIO DRYDEN	n Metal		6/30/16
NEW DIM 3050 DR ATTN PH DAYTON	YDEN RD IL HUST	ON	CORP						S CORP	
PAYTON						3050	DRYDEN	DOND		
	, OH 45	439								
CLAAD						DAY	PON, OH	45439		
	r			3184	RDBRBD	T		1.17	013	·····
15V41	-		0 31	/32"	F APPROLATION	ND		32'		
PER STA	NDARD LO	DAD HI	GH- UBO				5/13			
				CHEMICA	I. ANAT	YSTS				
c	Mn	р	s				: No	Cu	Sn	Al
							3 0.03			
v	TI		N	V100	0120	0.00	0105	0,00	01010	0,020
0.064	0.013 (0.002	0,0090							
GRAIN SIZE		SPEC	IFICATI	on Astm	E112	F	INE GRAII	¥ 5-8		
HARDNESS		SDRC	TELCAPT	ON ASTM	810	2	S ROLLED			
121(0(421)0		0140				SURFAC				
						266.0				
MICROCLEANL	INESS	SPEC	IFICATI	on astm	E45 M	eth a				
	A		В	C		D				
AVERAGE	Т 0,8	H 0.1	Т Н 0.9 0,	-	Н 0.0	Т 1,0 с	K 9,5			

Figure A-38. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1

GERDAU SPECIAL STEEL NORTH AMBRICA 5591 MORTILL ROAD JACKSON, MICHIGAN 49201

CERTIFIED	MATERIAL	TEST	REPORT
-----------	----------	------	--------

	CARTIFIBD MATERI		1	
29644	H0968RSA3200	75063075	302684 101	6/30/16
		210mm Bill		10/30/10
ROB ROB NEW DIMENSION 1 3050 DRYDEN RD			n metals corp	
ATTN PHIL HUST	00	3050 DRYDEN	ROAD	
DAYTON , OH 454		DAYTON , OH	45439	
EGADD	ORDER	D	LENOTH	
15V41	0 31/32"	RND	32'	
PER STANDARD LA	DAD HIGH- UBOLT 8 SPEC,			
Physicals	SPECIFICATION ASTM E8/	A370 AS ROLLED		
	0.	0 IN		
TENSILE KSI	YIELD KSI 👫 ELONG	ATION REDUCTION	on of Area	
131,8	90.0 14.	8 4:	9.9	
DI CALCULATION	SPECIFICATION CAT 1E00	24		
2,62				
DECARB	SPECIFICATION ASTM E10	77		
F	TOTAL= 0.015			
REDUCTION RATIO				
RATIO= 92.5 TO	1.0			
ARC FURNACE AND BREN REPAIRED B TO MERCURY OR T TEMPERATORES DUR	LTED AND MANUFACTURED I CONTINUOUS CASTING MET WELDING AND THIS MA O ANY OTHER METAL ALLO ING PROCESSING OR WHILE ALL INCOMING SCRAP AND	HOD, THE PRODUC TERIAL HAS NOT I Y THAT IS LIQUII IN OUR POSSESSIO	CT HAS NOT BEEN EXPOSED D AT AMBIENT DN.	fhat
PAGE 2 We certify that th Jerden Monroe 1000 Bast Front Street Jonrog, MI 40101	ese data are correct and d	:compliance with en	funderf. automatic	епндся ()

CONTINUED ON PAGE 3 Figure A-39. BCT Anchor Cable End Swaged Fitting, Test No. NYT-1, Cont.

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 480003368 COMMODITY : FINISHED HEX NUT GR-A SIZE : 3/4-10 NC 0/T 0.51MM LOT NO : 1N1610043 SHIP QUANTITY : 7,000 PCS LOT QUANTITY : 27,011 PCS HEADMARKS :

MANUFACTURE DATE : 2016/02/22

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/05/10 PACKING NO: GEM160303010 INVOICE NO: GEM/FNL-160324IN-4 PART NO: 1136715 SAMPLING PLAN: ASME B18.18-2011(Category. 2)/ASTM F1470-2012 HEAT NO: 15311340-3 MATERIAL: X1008A

FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0290	0.0600	0.2700	0.0150	0.0090	0.0300

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2015

SAMPLED BY: TAO JIA MIN SAMPLE SPECIFIED ACTUAL RESULT ACC. REJ INSPECTIONS ITEM 1.2400-1.2990 inch WIDTH ACROSS CORNERS 4 PCS 1.2780-1.2830 inch 0 4 ASME B18.2.2-2015 Max. 0.0180 inch 0.0150-0.0170 inch FIM 15 PCS 150 0.6170-0.6650 inch 0.6220-0.6220 inch THICKNESS 4 PCS 0 4 WIDTH ACROSS FLATS 4 PCS 1.0880-1.1250 inch 1.1080-1.1110 inch 0 4 ASTM F812-2012 PAS SED SURFACE DISCONTINUITIES 29 PCS 0 29 GAGING SYSTEM 21 PAS SED THREAD 15 PCS 15 0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

				SAMPLE	D BY: GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	80-82 HRB	15	0
PROOF LOAD	4 PCS	ASTM F606-2014		Min. 90 KSI	OK	4	0
PLATING THICKNESS (µ m)	5 PCS	ASTM B568-1998	İ	>=53	79.11-86.37	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER: 3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor.

Grin

Figure A-40. ¾-in. (19-mm) Square Nut, Test No. NYT-1

Certificate of Compliance

Sold To:	Purchase Order:	
UNL TRANSPORTATION	Job:	
	Invoice Date:	05/09/2017
THIS IS TO CERTIFY THAT WE HAVE SUPPLI THESE PARTS WERE PURCHASED TO T		

6 PCS 3/4"-10 Hot Dip Galvanized Finish Grade A Finished Hex Nut SUPPLIED UNDER OUR TRACE NUMBER 480003368 AND UNDER PART NUMBER 1136715

6 PCS 3/4"-10 Grade A Hot Dipped Galvanized Finish Steel Regular Square Nut SUPPLIED UNDER OUR TRACE NUMBER 120265730 AND UNDER PART NUMBER 0189532

This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current revision to avoid using obsolete copies.
	This document was printed on 05/15/2017 and was current at that time.
Fastenal Account Representative Signature	Fastenal Store Location/Address
	3201 N. 23rd Street STE 1
	LINCOLN, NE 68521
Printed Name	Phone #: (402)476-7900
	Fax #: 402/476-7958
Date	Page 1 of 1

Figure A-41. ¾-in. (19-mm) Square and Hex Nut, Test No. NYT-1

CERTIFIED MILL TEST REPORT

Alton Statel Test Lab #5 Cut Street Alton, IL 62002-9011 (618) 463-4490 EXT 2486 (618) 463-4491 (Fax)

BILL TO								SHIP TO									
2		Unytite, In One Unytit Peru, IL 6.	e Drive						Unyt	ite, Inc. Civic Rom ile, IL 613	Sec. 1						
Date ASI Ord No. ASI Ord Line Item	and the second	70300	ustomer P		B1045SC	P00597	1-3A		Specifica SAE 1								
Item Description Steel Bar, Hot Rolled									1 00.						Stran	d Cast, RR	=39.93:1
Heat Number	, 1.2500, 1			::::::		CAL ANA			Yield PS		Tensik & E-1019	PSI	% Elong	ation	% ROA	Bend	Test
Heat Number	c	Hn	P	S	SI	Qu	NI	a	Mo	Sn	A	Nb/Cb	V	В	π	N	0
166334	0.45	0.75	0.006	0.025	0.23	0.18	0.075	0.153	0.015	0.009	0.002	0.025	0.005	0.0004	0.0008	0.0099	0.0003
				JOMINY	HARDEN	ABILITY	USING A	STH A-2	55 CALCU	LATED F	ROM CHE	MICAL DI	-	-	-	-	-
166334	,	1.00	ASTM E-45	Method A:				E-45 Methy	RESULTS	SAE 3422	AST	M E-381	c	harpy] на	rdness	1
Heat Number	TA	11B T	с то	НА	HB HK	: HD	s	1	0	S I	DS,	RC			RC	RB BHN	
166334							ADDIT	-	Decarb: .0		1 1	2 2					
RMS 021							ADDIII	UNIAL CA	MACRIS								
No mercury, lead, rada equipment is used or d statel. No weld or weld	eliberately a	dded in the	production				_	8		t written a		rt, except in i representati					
This Steel is 100% Elec U.S.A. Material qualifie				in the					hereby certify the records			PORATED	contained				
Subscribed and swom the county of Madison,			Public, in as	nd for		1999 B	and the second	9	Juality Lead	er: Jos	h Levi						
this										1	the						
(Notary Public)								-	0	0	X						

Figure A-42. 1-in. (25-mm) Diameter Heavy Hex Nut for Downstream Cable Assembly, Test No. NYT-1

R#17-411 NY Box Rail

BCT Nuts and Washers

23513 Groesbeck Higbway Warren, Michigan 48089 (586)773-2700 * Far (586)773-2298 www.PrestigeStamping.com

Prestige Stamping

Inc

Feb2017 SMT Yellow Paint

PRODUCT CERTIFICATION

CERTIFICATION NUMBER

111237

THIS IS TO CERTIFY THE PRODUCT STATED BELOW WAS FABRICATED AND PROCESSED TO THE ORDER AS INDICATED AND CONFORMS TO THE APPLICABLE SPECIFICATIONS AND STANDARDS.

Customer:	BENNETT BOLT WORKS INC 12 ELBRIDGE ST JORDAN, NY 13080
Customer Part: Frestige Part: Part Name: Purchase Order: Shipment BOL: Shipment ID: Quantity: Manufacturers Marking:	F2523MP300 Grade: CSECONDARY STEEL 1"USS LOW CARBON H/DIP Lot: C6992 6011096-1 Heat: 0266540 8167276 Carbon: .051 (2.13 Max.) A0177562 Manganese: .3794 (2.6 Max.) 16365 Phosphorous: .0225 (2.04 Max.)
SPECIFICATIONS	TEST RESULTS
:	:
PLATING: TEST METHO 0.0017" Min, HOT DIP GLAV AST	0.0020" - 0.0025"
	sta.
This product was produced under an ISO/TS 1694 ISO/TS 16949 Certification No: 0062833. Material was maited and manufactured in the U.S This product was manufactured in Warren, Michig	A. In U.S.A. Insus as produced according to ANSUASMI B18.22.1. Ess contom: to ASTM F436 FRAME SCHUBERT Quality Assurance Manager full without prior written approval.

Figure A-43. 1-in. (25-mm) Diameter Plain Round Washer, Test No. NYT-1

COUNTRY OF ORIGIN :

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 120094419 COMMODITY : HEX MACHINE BOLT GR-A SIZE : 1(4-20X8 NC LOT NO : 1B1092640 SHIP QUANTITY : 7,200 PCS LOT QUANTITY : 7,200 PCS LOT QUANTITY : 7,252 PCS HEADMARKS : CYI & 307A MANUFACTURE DATE : 2010/10/15 R#17-510 NY DOT BOX BEAM

Tel: (0573)84185001(48Lines) Fax: (0573)8418488 84184567 DATE : 2017/03/20 PACKING NO : GEM101213009 INVOICE NO : GEM/FNL-101221 IN-1 PART NO : 91824 SAMPLING PLAN : ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO : 10201285-3 MATERIAL : X1010A FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.3300	1.2500	0.0410		
Test Value	0.0430	0.1000	0.3900	0.0100	0.0060	0.0200

CHINA

DIMENSIONAL INSPECTIONS ACCORDING TO ASME B18.2.1-2012

SAMPLED BY : ZHANG HUI JING INSPECTIONS ITEM SAMPLE SPECIFIED ACTUAL RESULT ACC. REJ. THREAD LENGTH 1.0000 inch 1.1310-1.1600 inch 15 PCS 15 0 0.2420-0.2500 inch 0.2420-0.2450 inch MAJOR DIAMETER 15 PCS 15 0 BODY DIAMETER 4PCS 0.2370-0.2600 inch 0.2460-0.2480 inch 4 0 0.4840-0.5050 inch 0.4950-0.4950 inch WIDTH ACROSS CORNERS 4 PCS 4 0 0.1500-0.1880 inch HEIGHT 4 PCS 0.1520-0.1590 inch 4 0 7.8200-8.1000 inch NOMINAL LENGTH 7.9020-7.9200 inch 15 PCS 15 0 0.4250-0.4380 inch WIDTH ACROSS FLATS 4 PCS 0.4300-0.4370 inch 4 0 ASTM F788-2013 PASSED SURFACE DISCONTINUITIES 22 0 22 PCS THREAD 15 PCS ASME B1.1-2003 nut PASSED 15 0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

SAMPLED BY : TANGHAO

INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		Max. 100 HRB	86-89 HRB	15	0
TENSILE STRENGTH	4 PCS	ASTM F606-2014		Min. 60 KSI	66-69 KSI	4	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	55.5-77.9	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

On

Figure A-44. ¹/₂-in. (6-mm) Diameter Hex Head Shear Bolt, Test No. NYT-1

Certified Material Test Report to BS EN 10204-2004 3.1 FOR ASTM A563, GRADE A HEX FIN NUTS

FACTORY: ADDRESS:	IFI & Morgan Ltd. Haiyan, Zhejiang, C	Sherifforgerates Answerperverse	-510		REPORT DATE:05 D	ec,2016	
CUSTOMER:		1/4"		USED FOR	MFG LOT NUMBER	: GL16263-	D
SAMPLE SIZE SIZE: <mark>1/4-20 F</mark>	: ACC. TO ASME <mark>IDG</mark>		F1470-12 150000 PC	BOLTS S	PO NUMBER:220022		
STEEL PROPE STEEL GRAD					PART NO: 1136 HEAT NUMBER: 18		
CHEMISTRY : ASTM <mark>A563 G</mark> TEST:		C %*100 0.55max 0.08	Mn%*100 min 0.34	P %*1000 0.12max 0.02	S %*1000 0.15max 2 0.022		
DIMENSIONA CHARACTER	L INSPECTIONS ISTICS T	EST METHOD	SPEC	SPECIFICATIO	N: ASME-B18.2.2-2010 ACTUAL RESULT		REJ.
**************************************	e ASI	**************************************	*****	******	**************************************	29	********
THREAD WIDTH A/F WIDTH A/C HEIGHT	ASP	ME B1.3-2003 2B 0.438-0.428 0.505-0.488 0.226-0.212			PASSED 0.435-0.432 0.498-0.496 0.220-0.218	15 5 3 4	0 0 0 0
MECHANICA CHARACTER		" to 1 1/2" `EST METHOD *************	17 C	CIFIED *****	SPECIFICATION: AS ACTUAL RESULT	ACC.	GR-A REJ. *******
HARDNESS : PROOF LOAD		°M F606-2014 °M F606-2014		4ax(107HRB) 68 Ksi	C25-27 72 Ksi	15 5	0 0
CHARACTER		EST METHOD	A LANCE VERY NO.	"IFIED *****	ACTUAL RESULT	ACC. ******	REJ. ******
ASTM OR SAI	IN ACCORDANCE E SPECIFICATION.	WE CERTIFY TH	METHOI IAT THIS	data is a tru	2.50miu D IN THE APPLICA JE REPRESENTATION FESTING LABORATO	1 OF	0

(SIGNATURE OF Q.A. LAB MGR.) (NAME OF MANUFACTURER)

Figure A-45. ¹/₄-in. (6-mm) Diameter Nuts, Test No. NYT-1

CERTIFIED MATERIAL TEST REPORT FOR ASTM A307, GRADE A FULLY THREADED HEX BOLTS

FACTORY: NINGBO ECONOMIC & TECHNICAL DEVELOPMENT REPORT DATE:2015/11/11 ZONE YONGGANG FASTENERS CO., LTD.

ADDRESS: FuShan South Road No.17, BeiLun NingBo China

NY DOT Box Beam Item H2

MANUFACTURE DATE:2015/10/14

H#715030091

MFG LOT NUMBER:M-2015HT909-3 SHIPPED QTY: 89250PCS

CUSTOMER: FASTENAL MFG LOT NUM MANU QTY: 89250PCS SHIPPED QTY: 1 SAMPE SIZE: ACC.TO Dimension: ASME B18.18-11; Mechanical Properties: ASTM F1470-12 SIZE: 1/4-20X1 ZP CR3+ HEADMARKS: 307A PLUS NY PO NUMBER: 22

PO NUMBER 220019936 PART NO:10803

STEEL PROPERTIES: MATERIAL TYPE:Q195

HEAT NUMBER:715030091

CHEMISTRY SPEC: Grade A ASTM A307-12 TEST:

C %*100	Mn%*100	P %*1000	S %*1000
0.29max	1.20 max	0.04max	0.15max
0.07	0.31	0.016	0.004

DIMENSIONAL INSPECT	TIONS Unit:ir	ich	SPECIFICATION: AS	ME B18.2.1 - 2	012
CHARACTERISTICS	SPECI	FIED	ACTUAL RESULT	ACC.	REJ.
*****************	(6)市场沿水市沿水市市市市市市市	1.目前市台市市田市市市市市市市市市	医结毒状传染条体传染的 新经济外的传染的的	*****	市和清水市市市本本
VISUAL	ASTM F788	-2013	PASSED	22	0
THREAD	ASME B1.1	-2003,3A GO,2A NOGO	PASSED	15	0
WIDTH FLATS	0.425	-0.438	0.430-0.435	4	0
WIDTH A/C	0.484	-0.505	0.494-0.500	4	0
HEAD HEIGHT	0.150	-0.188	0.168-0.181	4	0
THREAD LENGTH	0.970	-1.020	0.987-1.010	15	0
LENGTH	0.970	-1.020	0.987-1.010	15	0
MECHANICAL PROPER'	TIES:	SPECIFICA	TION: ASTM A307-20	12 GR-A	
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC. *******	REJ. *******
CORE HARDNESS :	ASTM F606-2014	69-100 HRB	75-78	15	0
WEDGE TENSILE;	ASTM F606-2014	Min 60 KSI	66-70	4	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
COATINGS OF ZINC		SPECIFIATION: Fc/Zn 3	3AT ASTM F1941-2015)	
Coating thickness /	ASTM B568-98(2104)	Min 0.0001"	0.0004" -0.0006"	4	0
SALT SPRAY TEST	ASTM B117-11	6 Hr no white rust, 12 Hr	no red rust Passed	15	0
ZINC ELECTROPLATING	WITH TRIVALENT CHRC	MATE(CR+3) IN COMPLE	ANCE WITH ROHS REQ	UTREMENTS.	
ALL TESTS IN ACCO	ORDANCE WITH TH	E METHODS PRESCH	RIBED IN THE APPI	JCABLE	
ASTM SPECIFICATION	WE CERTIFY TH	AT THIS DATA IS A	TRUE REPRESENTA	TION OF	
INFORMATION PROVID)ED BY THE MATER	IAL SUPPLIER AND C	UR TESTING LABO	RATORY.	
Maker's ISO# (X0109Q16722R3M/3302	了路上新式本方。	ZARCERSTON		
		NERGO LEGISTIC &	HARAL CALLSON		
		ZUE VERSIE E			
		(SIGNATURE CEROLA	AB, MGR.)		
		(NAME OF STAND	AGTURER)		

Figure A-46. ¼-in. (6-mm) Diameter Hex Head Bolt, Test No. NYT-1

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER ZP

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: TIANJIN JIGE HARDWARD MANUFACTURE CO.LTD. FACTORY ADDRESS: 1146 KAIXUAN STREET DAGANG TIANJIN, CHINA

DESCRIPTION: 1/4 INVOICE NBR: TD16680155 PART NBR.: 1133004 LOT NO.: 16H-168236-9 DATE: 2016-10-10 ORDER NBR. 210114135 QUANTITY:8250PCS

DIMENSIONS		R	ESUL		IT:INC	
	STANDARD	1	2	3	4	5
INSIDE DIA	0.307-0.327	0.317	0.316	0.313	0.324	0.316
OUTSIDE DIA	0.727-0.749	0.741	0.738	0.740	0.739	0.739
THICKNESS	0.051-0.080	0.063	0.065	0.055	0.059	0.060

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT. CHARACTERISTICS SPECIFIED ACTUAL RESULT ACC REL

CHARACTERISTICS	SPECIFIED	ACTUAL RESULT	ACC.	REJ.	
ZINC PLATED ASTM 1941	FE/ZN 3AT				
	Min 3 um	3.6-6.0um	8	0	

NOTE

1. QUANTITY OF SAMPLES: 5 PCS	-
下型茶文	¢.
2. JUDGEMENT: GOOD	1
III IIII	>1
3. CHIEF INSPECTOR:	11
1944	1
A. A	-
and the second s	

Figure A-47. ¹/₄-in. (6-mm) Flat Washer, Test No. NYT-1

CERTIFIED MATERIAL TEST REPORT FOR ASTM A307, GRADE A - MACHINE BOLTS

FACTORY: NINGBO ECONOMIC & TECHNICAL DEVELOPMENT ZONE YONGGANG FASTENER CO., LTD. ADDRESS: FuShan South Road No.17,BeiLun NingBo China REPORT DATE:2015/12/1

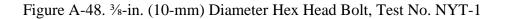
MANUFACTURE DATE:2015/11/18

91873

CUSTOMER: FASTENALMFG LOT NUMBER:M-2014HT1244-2SAMPE SIZE: ACC.TO Dimension:ASME B18.18-11;Mechanical Properties:ASTM F1470-12MANU QTY: 8800PCSSIZE:3/8-16X7 1/2HDGHEADMARKS: 307A PLUS NYPO NUMBER:160100588

STEEL PROPERTIES:

MATERIAL TYPE:Q195


HEAT NUMBER:715030688

PART NO:

CHEMISTRY SPEC:	C %*100	Mn%*100	P %*1000	S %*1000
Grade A ASTM A307-12	0.29max	1.20 max	0.04max	0.15max
TEST:	0.08	0.31	0.028	0.021

DIMENSIONAL INSPECT	TIONS Unit:in	ch	SPECIFICATION: ASM	E B18.2.1 - 2	2012
CHARACTERISTICS	SPECIF	FIED	ACTUAL RESULT	ACC.	REJ.
****	*****	*****	*****	******	*****
VISUAL	ASTM F788-	2013	PASSED	22	0
THREAD	ASME B1.1-	2003,3A GO,2A NOGO	PASSED	15	0
WIDTH FLATS	0.544	-0.562	0.549-0.558	4	0
WIDTH A/C	0.620-	-0.650	0.631-0.641	4	0
HEAD HEIGHT	0.226	-0.268	0.234-0.258	4	0
BODY DIA.	0.360	-0.388	0.369-0.371	4	0
THREAD LENGTH	1.25	Min	1.262-1.275	15	0
LENGTH	7.320-	-7.600	7.339-7.581	15	0
MECHANICAL PROPERT	SIES:	SPECIFICA	TION: ASTM A307-2012	GR-A	
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
*****	*****	****	*****	******	*****
CORE HARDNESS :	ASTM F606-2014	69-100 HRB	76-80 HRB	4	0
WEDGE TENSILE:	ASTM F606-2014	Min 60 KSI	66-69 KSI	4	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
COATINGS OF ZINC:		SPECIFIATION: ASTM 1	F2329-2013		
HOT DIP GALVANIZED	ASTM B568-98(2104)	Min 0.0017"	0.0017" -0.0018"	4	0
ALL TESTS IN ACCO	RDANCE WITH TH	E METHODS PRESCH	UBED IN THE APPLIC	ABLE	
ASTM SPECIFICATION.	. WE CERTIFY THA	AT THIS DATA IS A	TRUE REPRESENTATIO	ON OF	
INFORMATION PROVID	ED BY THE MATER	IAL SUPPLIER AND O	UR TESTING LABORA	TORY.	
Maker's ISO#	00109Q16722R3M/330	2 宁 就会請決承清氣 KIN000 ECCESSIC & ZORE YOF COLOR FAS	NALA TELATATA TEMPETANGAN TELECO, LO		
		(SIGNATURE	LAB MGR.)	-	

(NAME OF MANUFACTURER)

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 120261713 COMMODITY : FINISHED HEX NUT GR-A SIZE : 3/8-16 NC O/T 0.43MM LOT NO : 1N1640033 SHIP QUANTITY : 67,500 PCS LOT 356,291 PCS HEADMARKS :

MANUFACTURE DATE : 2016/04/05

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184088 84184567 DATE: 2017/02/04 PACKING NO: GEM160602034 INVOICE NO: GEM/FNL-160616IN-3 PART NO: 1136705 SAMPLING PLAN: ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO: 169D0729 MATERIAL: 1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2007

Chemistry	C%	MN%	P%	S%
Spec. : MIN.				
MAX.	0.5800		0.1300	0.2300
Test Value	0.0800	0.2600	0.0120	0.0070

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2010

SAMPLED BY ZHANG XIA						
INSPECTIONS ITEM	SAMPLE	SPECIFIED		ACTUAL RESULT	ACC.	REJ
WIDTH ACROSS CORNERS	6PCS		0.6280-0.6500 inch	0.6310-0.6350 inch	6	0
FIM	15PCS	ASME B18.2.2-2010	Max. 0.0170 inch	0.0150-0.0150 inch	15	0
THICKNESS	6PCS		0.3200-0.3370 inch	0.3270-0.3290 inch	6	0
WIDTH ACROSS FLATS	6PCS		0.5510-0.5630 inch	0.5560-0.5580 inch	6	0
SURFACE DISCONTINUITIES	29PCS		ASTM F812-2012	PASSED	29	0
THREAD	15PCS	G	AGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES :

ASTM A563-2007

				SAMPLE	DBY: GYBIN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	81-86 HRB	15	0
PROOF LOAD	6 PCS	ASTM F606-2014		Min. 90 KSI	OK	6	0
PLATING THICKNESS(µm)	29 PCS	ASTM B568-1998		>=53	60.18-96.18	29	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Grin

page 1 of 1

Figure A-49. ³/₈-in. (10-mm) Diameter Nuts, Test No. NYT-1

TEST REPORT

USS FLAT WASHER, HDG

CUSTOMER:			DATE: 2015-12-02			
PO NUMBER: 11019476	6	MFG LOT NUMBER: M-SWE0411325-6				
SIZE: 3/8			PART NO: 1133182			
HEADMARKS:			QNTY:	52,500	PCS	
DIMENSIONAL INSPEC	TIONS	SPEC	IFICATION: ASME B18.	21.1(2009)	
CHARACTERISTICS	SPEC	CIFIED	ACTUAL RESULT	ACC.	REJ.	
*****	**********	******	*****	******	******	
APPEARANCE	ASTM	F788-07	PASSED	100	0	
OUTSIDE DIA	0.993	3-1.030	0.998-1.000	8	0	
INSIDE DIA	0.433	3-0.453	0.446-0.447	8	0	
THICKNESS	0.064	4-0.104	0.065-0.069	8	0	
	ASTM A153 class			-		
HOT DIP GALVANIZED	C. RoHS Compliant	Min 0.0017"	0.0021-0.0024In	8	0	
	DAIA IS A TRUE REF TING LABORATORY.	RESENTATION OF IN (ROM (SIGN	NTHE APPLICABLE ASTM S FORMATION PROVIDED B Jiashan Yongxin Fasteners CO., L	Y THE MA .td. .td.		

嘉善永鑫紧固件有限公司

浙江省嘉善县陶庄镇汾湖南路357号

Figure A-50. ³/₈-in. (10-mm) Plain Round Washer, Test No. NYT-1

JINAN STAR FASTENER CO., LTD NO.75 CUIPING STREET PINGYIN JINAN CHINA TEL: 0086 531 87896380 FAX: 0086 531 87871032 E-mail: zhangyuhua@star-fastener.com CERTIFICATE OF INSPECTION HY0380.1.3-12 HY0380.1.3-12

Manufacturering Date: 2016-3-18 DATE: 2016-3-24 Customer Part Number客户产品代号 10884 Customer Control (PO) Number客户订 120253605 单号 1/2-13 X 1 1/2 Tap Z Product Description产品描述 ZnCr³⁺ Surface Condition表面处理 307A and 01RL Head Marking头部标记 Lot Size (Manufactured QTY):生产数量 8080pcs Lot Size (QTY Shipped):装运数量 8270pcs Lot Number订单号 FAS1638 Mechanical properties机械性能要求 ASTM A307-2014 Gr307A Q235 G4601173 Material type: Heat Number C% Mn% Si% P% Ni% Cr% Cu% S% Chemical composition化学成份:标准 max0.33 max1.25 max0.15 max0.041 0.020 0.006 Chemical composition化学成份:实测 0.16 0.43 0.16 0.030 0.002 0.031 Sampling Plan Used Dimensional as per ASME B18.18-2011/Mechanical Property as per F1470-2012 使用的抽样方案 Sampling REJ Specification Test method Specified Test value ACC Specification技术要求: 单位 Plan 不合 檢測方法 檢測标准 标准要求 实测值 合格 抽样方案 格 Width across Flat对边尺寸 ASME B18.2.1-2012 0.725-0.750 0.744-0.748 5/0 5 0 in ASME B18.2.1-2012 0.826-0.866 0.842-0.848 5 0 Width across Corners对角尺寸 in 5/0 ASME B18.2.1-2012 0.302-0.364 0.339-0.345 5/0 5 0 Height高度 in ASME B18.2.1-2012 1.44-1.54 1.495-1.498 15/0 15 0 Length总长度 in Radius under head头下R角 ASME B18.2.1-2012 0.01-0.03 in 0.017-0.019 15/0 15 0 Max Distance from under head to thread ASME B18.2.1-2012 0 154max 0.126-0.129 15/0 15 0 in 头下间距 0.488-0.498 0.492-0.493 15/0 Major 大径 ANSI B1.1-2003 in 15 0 ANSI B1.1-2003 3A GO 3A GO 15/0 15 0 Thread 螺纹 15 ANSI B1.1-2003 2A NOGO 2A NO GO 15/0 0 Core Hardness芯部硬度 ASTM A307-2014 ASTM F606-2014 69-100 HRB 92-95 15/0 15 0 Tensile Strength抗拉强度 ASTM A307-2014 ASTM F606-2014 min60 KSI 82.7-83.6 5/0 5 0 ProofLoad保证载荷 ASTM A307-2014 ASTM F606-2014 5/0 5 0 in ASTM F1941-2015 ASTM B568-1998 min0.0001 0.00202-0.000212 29/0 29 0 Plating thickness镀层厚度 in 6h without 盐雾试验结果(salt spray test 6h without white rust white rust ASTM F1941-2015 ASTM B117-2011 15/0 15 0 result) 12h without 12h without red rust red rust ASTM F788-2013 Appearance外观 Visual OK 29/0 29 0 Parts are manufactured and tested according to above specification, we certify that this is a true representation of information provided by manufacturer 产品是按照上述要求进行生产和检测的,我们证明厂家提供的信息是真实的

Signature: Fu Yan Jun Title: Quality Manager The requirements are fulfilled Inspector (终检员):马付彬

Figure A-51. ¹/₂-in. (13-mm) Long Hex Head Bolt, Test No. NYT-1

Certified Material Test Report to BS EN 10204-2004 3.1 FOR ASTM A563, GRADE A HEX FIN NUTS

	& Morgan Ltd. Haiyan Office iyan, Zhejiang, China	REPORT DATE:05 APRIL,2016		
R#	17-513 1/2" Nuts A563 Grade A			
CUSTOMER: NY	STENAL BOX Beam	MFG LOT NUMBER: GL16052-2		
SAMPLE SIZE: AC SIZE: 1/2-13 ZP	C. TO ASME B18.18-11;ASTM F1470-12 QTY: 28125PCS	PO NUMBER : 210104867		
	Q11.201201C0	PART NO: 1136110		
STEEL PROPERTII STEEL GRADE: Q		HEAT NUMBER: 180132		
CHEMISTRY SPEC	C %*100 Mn%*100 P %*1000	S %*1000		
ASTM A563 GRAD	E A 0.55max min 0.12max	0.15max		
TEST:	0.08 0.35 0.0	0.037		
DIMENSIONAL IN				
DIMENSIONAL IN CHARACTERISTIC		TION: ASME-B18.2.2-2010		
<pre> CHARACTERISTIC *********************************</pre>		ACTUAL RESULT ACC. REJ.		
APPEARANCE	ASTM F812-2013	PASSED 29 0		
THREAD	ASME B1.3-2003 2B	PASSED 15 0		
WIDTH A/F	0.750-0.736	0.740-0.738 5 0		
WIDTH A/C	0.866-0.840	0.858-0.855 3 0		
HEIGHT	0.448-0.427	0.440-0.438 4 0		
	OPERTIES: 1/4" to 1 1/2"	SPECIFICATION: ASTM A563-07a GR-A		
CHARACTERISTIC		ACTUAL RESULT ACC. REJ.		
HARDNESS :	ASTM F606-2014 B68-C32 Max(107HRB)			
PROOF LOAD :	ASTM F606-2014 B08-C52 Max(10/11KB)	72 Ksi 5 0		
TROOT LOTE .				
CHARACTERISTIC	S TEST METHOD SPECIFIED	ACTUAL RESULT ACC. REJ.		
******	***** ************	***************		
ZINC PLATED	ASTM F1941-2010 Min 3 μ m	<u>5.5 μ m 5 0</u>		
	ATINGWITHTRIVALENTCHROMATE(CR+3) INCO			
		CRIBED IN THE APPLICABLE		
	CIFICATION. WE CERTIFY THAT THIS DATA IS			
INFORMATION PI	ROVIDED BY THE MATERIAL SUPPLIER AND	OUR TESTING LABORATORY.		

(SIGNATURE OF Q.A. LAB MGR.) (NAME OF MANUFACTURER)

Figure A-52. ¹/₂-in. (12-mm) Nuts, Test No. NYT-1

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER HDG

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: TIANJIN JIGE HARDWARD MANUFACTURE CO.LTD. FACTORY ADDRESS: 1146 KAIXUAN STREET DAGANG TIANJIN, CHINA

DESCRIPTION: 1/2INVOICE NBR: TD16680155 PART NBR.: 1133184 LOT NO.: 16H-168236-10

DATE: 2016-10-10 ORDER NBR. 210114135 QUANTITY:11250PCS

DIMENSIONS

(UNIT:INCH)

		RESULT						
	STANDARD	1	2	3	4	5		
INSIDE DIA	0.557-0.577	0.563	0.562	0.561	0.560	0.562		
OUTSIDE DIA	1.368-1.405	1.395	1.397	1.396	1.399	1.398		
THICKNESS	0.086-0.132	0.095	0.106	0.101	0.094	0.100		

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT. REJ.

ACTUAL RESULT ACC. SPECIFIED CHARACTERISTICS HOT DIP GALVANIZED ASTM F2329 0

52-78um Min 43 um

8

NOTE

Figure A-53. ¹/₂-in. (12-mm) Diameter Plain Round Washer, Test No. NYT-1

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

 PURCHASER : FASTENAL COMPANY PURCHASING

 PO. NUMBER : 120274323

 COMMODITY : HEX MACHINE BOLT

 GR-A

 SIZE :
 3/4-10X8 NC

 LOT NO :
 1B16A1385

 SHIP QUANTITY :
 1,080 PCS

 LOT
 5,572 PCS

 HEADMARKS :
 CYI & 307A

MANUFACTURE DATE : 2016/11/23

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)8418408 84184567 DATE: 2017/02/04 PACKING NO: GEM/FNL-161218IN-1 PART NO: 91972 SAMPLING PLAN: ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO: G1607088001 MATERIAL: 1015A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.3300	1.2500	0.0410		
Test Value	0.0460	0.1600	0.4200	0.0090	0.0060	0.0400

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.1-2012

		SAMPLED BY : ZHANG HUI JI	NG	
INSPECTIONS ITEM	SAMPLE	SPECIFIED ACTUAL RESULT	ACC.	REJ
THREAD LENGTH	15PCS	2.0000 inch 2.0630-2.0810 inch	15	0
MAJOR DIAMETER	15PCS	0.7370-0.7500 inch 0.7400-0.7480 inch	15	0
BODY DIAMETER	4PCS	0.7290-0.7680 inch 0.7400-0.7480 inch	4	0
WIDTH ACROSS CORNERS	4PCS	1.2400-1.2990 inch 1.2790-1.2840 inch	4	0
HEIGHT	4PCS	0.4550-0.5240 inch 0.4750-0.4810 inch	4	0
NOMINAL LENGTH	15PCS	7.8200-8.1400 inch 7.9290-7.9470 inch	15	0
WIDTH ACROSS FLATS	4PCS	1.0880-1.1250 inch 1.1090-1.1240 inch	4	0
SURFACE DISCONTINUITIES	22PCS	ASTM F788-2013 PASSED	22	0
THREAD	15PCS	ASME B1.1-2003 nut PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

				SAMPLE	DBY: GYBIN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	13 PCS	ASTM F606-2014		Max. 100 HRB	79-83 HRB	13	0
TENSILE STRENGTH	3 PCS	ASTM F606-2014		Min. 60 KSI	62-65 KSI	3	0
PLATING THICKNESS(µm)	18 PCS	ASTM B568-1998		>=53	55.83-74.11	18	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

grin

page 1 of 1

Figure A-54. ³/₄-in. (19-mm) Diameter, 8-in. (203-mm) Long Hex Bolt, Test No. NYT-1

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 120274323 COMMODITY : HEX MACHINE BOLT GR-A SIZE : 3/4-10X8 NC LOT NO : 1B16A1385 SHIP QUANTITY : 1,530 PCS LOT 2,246 PCS HEADMARKS : CYI & 307A

MANUFACTURE DATE : 2016/11/24

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184088 84184567 DATE: 2017/02/04 PACKING NO: GEM161201013 INVOICE NO: GEM/FNL-161218IN-1 PART NO: 91972 SAMPLING PLAN: ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO: 1608020500 MATERIAL: 1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014

Chemistry	C%	MN%	P%	S%
Spec. : MIN. MAX.	0.3300	1.2500	0.0410	
Test Value	0.0900	0.3300	0.0190	0.0060

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.1-2012

		SAMPLED BY : LXQING		
INSPECTIONS ITEM	SAMPLE	SPECIFIED ACTUAL RESULT	ACC.	REJ
THREAD LENGTH	13PCS	2.0000 inch 2.2060-2.2130 inch	13	0
MAJOR DIAMETER	13PCS	0.7370-0.7500 inch 0.7370-0.7450 inch	13	0
BODY DIAMETER	3 PCS	0.7290-0.7680 inch 0.7330-0.7510 inch	3	0
WIDTH ACROSS CORNERS	3 PCS	1.2400-1.2990 inch 1.2500-1.2680 inch	3	0
HEIGHT	3 PCS	0.4550-0.5240 inch 0.4660-0.5080 inch	3	0
NOMINAL LENGTH	13PCS	7.8200-8.1400 inch 7.8520-8.1190 inch	13	0
WIDTH ACROSS FLATS	3 PCS	1.0880-1.1250 inch 1.0920-1.1000 inch	3	0
SURFACE DISCONTINUITIES	18PCS	ASTM F788-2013 PASSED	18	0
THREAD	13PCS	ASME B1.1-2003 nut PASSED	13	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

				SAMPLE	DBY: GYBIN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	13 PCS	ASTM F606-2014		Max. 100 HRB	81-85 HRB	13	0
TENSILE STRENGTH	3 PCS	ASTM F606-2014		Min. 60 KSI	63-64 KSI	3	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	70.22-72.58	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

1grin

page 1 of 1

Figure A-55. ³/₄-in. (19-mm) Diameter, 8-in. (203-mm) Long Hex Bolt, Test No. NYT-1

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210100834 COMMODITY : FINISHED HEX NUT GR-A SIZE : 3/4-10 NC O/T 0.51MM LOT NO : 1N1580463 SHIP QUANTITY : 3,000 PCS LOT 150,457 PCS HEADMARKS :

MANUFACTURE DATE : 2015/09/29

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)8418408 84184567 DATE : 2017/02/04 PACKING NO : GEM160214004 INVOICE NO : GEM/FNL-160125ED PART NO : 1136715 SAMPLING PLAN : ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO : 331502913 MATERIAL : 1010A FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO	ASTM A563-2007

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						BUT OF HERE
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0390	0.0900	0.4200	0.0220	0.0060	0.0400

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2010

			SAMPLED	BY : FCHUN		
INSPECTIONS ITEM	SAMPLE	SPEC	IFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	6PCS		1.2400-1.2990 inch	1.2480-1.2910 inch	6	0
FIM	15PCS	ASME B18.2.2-2010	Max. 0.0180 inch	0.0130-0.0130 inch	15	0
THICKNESS	6PCS		0.6170-0.6650 inch	0.6220-0.6500 inch	6	0
WIDTH ACROSS FLATS	6PCS		1.0880-1.1250 inch	1.0950-1.1190 inch	6	0
SURFACE DISCONTINUITIES	29PCS		ASTM F812-2012	PASSED	29	0
THREAD	15PCS	G	AGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2007

				SAMPLE	DBY: GYBIN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	79-83 HRE	15	0
PROOF LOAD	6 PCS	ASTM F606-2014		Min. 90 KSI	OK	6	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	61.32-74.53	5 5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Grin

page 1 of 1

Figure A-56. ¾-in. (19-mm) Diameter Hex Nut, Test No. NYT-1

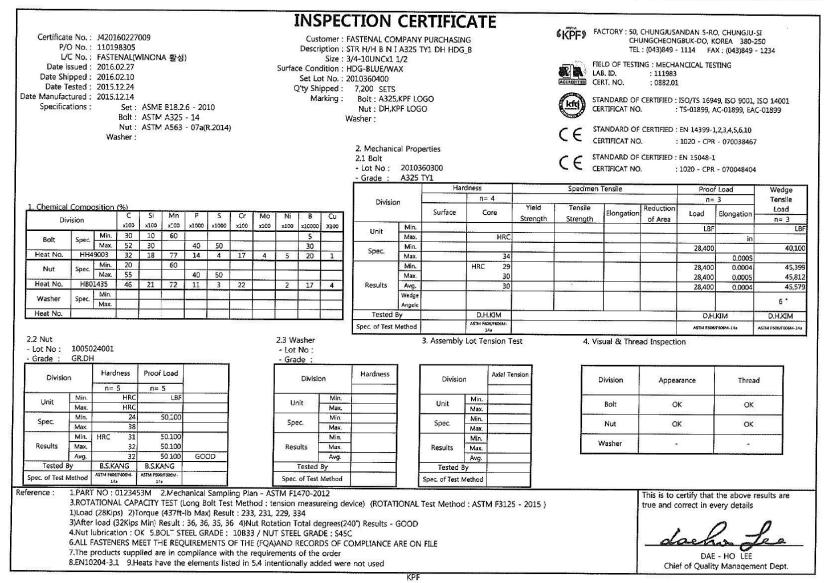


Figure A-57. ¾-in (19-mm) Diameter, 1¹/₂-in. (38-mm) Long Heavy Hex Head Bolt, Test No. NYT-1

NAL 2ty: 1,000
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
U O BH
UU
U DH
Amend
15
15
14
ion Visual ASTM 1 F812
Pass
1
Ni Cu
0.1400

Figure A-58. ³/₄-in. (19-mm) Heavy Hex Nut, Test No. NYT-1

NUCOR NUCOR CORPORATION NUCOR STEEL NEBRASKA

NUCOR FASTENER INDIANA PO BOX 6100 6730 COUNTY RD 60 ST JOE, IN 46785-0000 (260) 337-1600 Fax: (435) 734-4581 Sold To:

Mill Certification 10/14/2015

Ship To: NUCOR FASTENER INDIANA COUNTY RD 60 ST JOE, IN 46785-0000

Customer P.O.	155994	Sales Order	144113.8
Product Group	Special Bar Quality	Part Number	31000765000T770
Grade	1039ML1	Lot #	NF1510329811
Size	49/64" (.7656) Round Cail	Heat #	NF15103298
Product	49/64" (.7656) Round Coil 1039ML1	B.L. Number	N1-312641
Description	1039ML1	Load Number	N1-255778
Customer Spec		Customer Part #	005012

Roll Date: 10/9/2015 Melt Date: 9/30/2015 Qty Shipped LBS: 48,485 Qty Shipped Pcs: 9

Melt Date: 9/30/2015

С	Mn	v	Si	S	P	Cu	Cr	Ni	Mo	AI	Cb
0.42%	0.92%	0.004%	0.26%	0.013%	0.015%	0.09%	0.10%	0.04%	0.02%	0.003%	0.004%
Pb	Sn	Ca	в	ті	Ν						
0.000%	0.006%	0.0013%	0.0003%	0.002%	51 ppm						

Roll Date: 10/9/2015

Reduction Ratio 95 :1

Specification Comments: Coarse Grain Practice

Sellenium, Tellurium, Lead, Bismuth or Boron were not intentionally added to this heat.

All manufacturing processes of the steel materials in this product, including melting, have been performed in the United States.
 All products produced are weld free.
 Mercury, in any form, has not been used in the production or testing of this material.
 Test conform to ASTM A29-12, ASTM E415 and ASTM E1019-resulphurized grades or applicable customer requirements.

4. Test conform to April Approx. Appro

Darti	5012	PM#	30369
FALLS		Lor.14	the second s

Chemistry Verification Checks

	Receiving OK:	Checked By	Data 10-16-15
	Certifications OK:_		10-16-15
	Anttill		
	Jim Hill Division Metallurgist	Page	1 of 1
NBMG-10 January 1, 2012			

Figure A-59. ¾-in. (19-mm) Diameter, 2-in. (51-mm) Long Heavy Hex Head Bolt, Test No. NYT-1

000
000
U
C
CODE
end
isual ASTM F812
Pass
Cu
0.1400

Figure A-60. ³/₄-in. (19-mm) Heavy Hex Nut, Test No. NYT-1

PRODUCT CERTIFICATION Prestige CERTIFICATION NUMBER 23513 Groesbeck Highway Warren, Michigan 48089 (586)773-2700 * Far (586)773-2298 Stamping, 162656 www.PrestigeStamping.com Inc. . THIS IS TO CERTIFY THE PRODUCT STATED BELOW WAS FABRICATED AND PROCESSED TO THE ORDER AS INDICATED AND CONFORMS TO THE APPLICABLE SPECIFICATIONS AND STANDARDS Customer: THE STRUCTURAL BOLT CO 2140 CORNHUSKER HWY LINCOLN, NE 68521 Customer Part: 3/4" F436 PLN Prestige Part: P1480H00 Part Name: 3/4"F436 PLN Purchase Order: 19766 Shipment B0L: B198157 Shipment ID: A0212303 Quantity: 1000 Manufacturers Marking: "P" Steel Supplier: STEEL TECHNOLOGIES LLC Grade: CF436 GRADE STEEL Lot: D3124 Lot: D3124 Heat: C79696 Carbon: .41 (.22 - .55) Manganese: .74 (.6 - 1.6) Phosphorous: .011 (.04 Max.) Sulfur: .002 (.05 Max.) Silicon: .26 (.15 Min.) SPECIFICATIONS TEST RESULTS HARDNESS: TEST METHOD: ASTM E18 HRC 38 - 45 CHECK TO ASTM F606 HARDNESS: HRC 41 - 42 R#17-507 : 3/4" F436 Washers NY DOT Box Beam March 2017 SMT USS/SAE LC Washers are manufectured to the requirements of ASTM F844 specifications Chamistry is as reported from raw material certification and see not fail under Presting Stamping's accreditation. This product was produced under an ISO/TS 16949 Quality Assurance System. ISO/TS 16949 Certification No: 0062933. ISO/IS 19848 Centification Not OUC2033. Material was melied and manufactured in the U.S.A. This product was manufactured in Warren, Michigan U.S.A. This product conforms to all requirements for washers as produced according to A.S.T.M. F-436-13. Sampling Plan par P.S.I W.J. & 54.78.075. FRAME SCHUBERT Quality Assurance Manager The test results only apply to the Items tested. This test report must no be reproduced except in full without prior wilten approval. Materials used to manufacture these products are mercury, exbestos and racto activity free. Product is RoHS compliant. No weld repairs made to material. All certified product is AIS compliant. PAGE 1 of 1 02/01/17 11:41 SLEW Econ Information System

Figure A-61. ¾-in. (19-mm) Diameter Hardened Flat Washer, Test No. NYT-1

HANGZHOU SPRING WASHER CO.,LTD QUALITY TEST CERTIFICATE OF SPRING LOCK WASHER

Standard: <u>ASME B</u> order No.: <u>PO 2</u> Chemical		2009		Contr	act No.:	-	16HZW0	4195	
		3		Invo	ice No.:		16SHD	307	X
	С	S	Si	Mn	Р	S	Cr	Ni	Cu
L	0.63	0.63 0.22		0.55	0.015	0.007	0.06	0.06	0.08
()									
i.		5.0	3/4″	GALV					
			18	М					
			1605	5291					
			1133	3786		0			
Ac/n	Norm	n]	Result	Reject	Norm	ı	Result	Reject
2/100	19.33-1	9.86	19.	36-19.71	0				
1/32	Max32.	93	Ma	1x31.95	0	G			ŝ
1/32	Min6.	Min6.04		in6.08	0				
1/32	4. 88-5	. 33	4.	9-5.16	0				
2/100	None	è	20 22	None	0				с.
0/8	HRC38-	-46	HF	C38-40	0				
						0			
0/8	Qualif	ied	Qu	alified	0				
			G.						
The								d	
	A A A A A A A A A A A A A A A A A A A	Image: Constraint of the sering of the series of	Image: matrix independence Image: matrix independence 10.63 0. 10.63 0. 10.101 1000000000000000000000000000000000000	Image: normal system Image: normal system 10.63 0.22 10.63 0.22 10104132 3/4" 10104132 3/4" 10104132 1002 1/32 10.33-19 10.3 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/32 1033-19 10.4 1/33 1033-19 10.4 1/34	Image: None of the series of the s	C Si Mn P 0.63 0.22 0.55 0.015 J510104] J510104] J 0.55 0.015 J510104] J/4" GALV V V V Max J J J V V Max32 J J No N 0 J/32 Min6.V J J 0 0 J/32 Min6.V J J O 0	C Si Mn P S 0.63 0.22 0.55 0.015 0.007 $J510104$ $J5101044$ $J51010$	C Si Mn P S Cr 0.63 0.22 0.55 0.015 0.007 0.0 J510104136 J510104136 J510104136 J510104136 J510104136 J510104136 M J510104136 J51010413786 J J J J M J 1605291 J J J J J Ac/n Norm Result Reject Norm I J 1/32 Max32.93 Max31.95 0 J J J J 1/32 Min6.04 Min6.08 0 J	C Si Mn P S Cr Ni 0.63 0.22 0.55 0.015 0.007 0.06 0.06 J5101041 0.55 0.015 0.007 0.0 0.06 J5101041 3/4" GALV 0.007 0.0 0.06 0.5101041 3/4" GALV 0.007 0.0 0.06 0.001 10.374" GALV 0.007 0.007 0.007 0.001 10.374" GALV 0.007 0.007 0.007 Ac/n Norm 1605291 0.007 0.007 0.007 1/32 Moro Result Reject Norm Result 1/32 Max32.93 Max31.95 0 0.00 1000 1000 1/32 Min6.02 0 0 0.00 1000 1000 1000 1000 1000 1/32 Min6.92 0 0.0 0.0 1000 1000 1000 1000 1000 1/32 None 0 0.0 0.0 10000 10000 10000 100

Figure A-62. ¾-in. (19-mm) Diameter Lock Washer, Test No. NYT-1

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

+ CERTIFICATE OF CONFORMANCE |

For: CASH SALE PB Invoice#: 96359 Cust PO#: MIDWEST ROADSIDE Date: 2/08/2017 Shipped: 2/10/2017

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Desc:	ription:	7/8	X 8-1/2	GALV A	STM F3125	GRADE A325	HEAVY HEX	BOLT	
Hea	at#: NF10	510257	9	Base S	t eel: 414	0	Diam: 7/8		
Sour	ce: KREH	HER ST	EEL CO :	LLC		Proof Load	: 39,250	LBF	
с:	.420	Mn:	.930	Р:	.013	Hardness:	269 HBN		
s:	.025	Si:	.250	Ni:	.080	Tensile:	57,700 LBF	RA:	.00%
Cr:	.910	Mo:	.180	Cu:	.190	Yield:	0	Elon:	.00%
Pb:	.000	v :	.009	Cb:	.000	Sample Leng	gth: 0		
	.000			CE:	.6702	Charpy:		CVN Temp:	

LOT#18344

Nuts:

ASTM A563DH HVY HX

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

Other:

ALL ITEMS MELTED & MANUFACTURED IN THE USA

Ву Certification Department Quality Assurance Dane McKinnon

Figure A-63. ⁷/₈-in. (22-mm) Diameter, 8¹/₂-in. (216-mm) Long Heavy Hex Head Bolt, Test No. NYT-1

Ship To: Shipped Qty: Customer P0 No: Shipped Qty: Lot Number: 23468-75062745 Part Information Part Information Part No: A563 7/8-9 +0.022 DH HHN HDG BLUE DYE-0 Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th col<="" th=""></th>				
Part Number: 23468-75062745 Part Information Part No: A563 7/8-9 +0.022 DH HHN HDG BLUE DYE-0 Colspan="4">Colspan=4 Part No: A563 7/8-9 +0.022 DH HHN HDG BLUE DYE-0 Colspan=4 AstM A563 HHN, Grade DH, Hot Dipped Galv, Blue Dye Manufactured Quantity: 79,432 Specification Amend Specification AstME B1.1 2013 ASME B18.2.2 2015 ASTM F2329 2013 ASTM F60/606M 2015 ASTM F2329 2013 ASTM F60/606M 2015 ASTM F2329 2013 ASTM F60/606M 2015 ASTM F12/F812/M 2012 2015 Sectified Properties Description Mard/Methad Metha Metha Certified Chemical Analysis Certified Chemical Analysis Certified Chemical Analysis Certified Chemical Analysis				
Part Information Part No: A563 7/8-9 +0.022 DH HHN HDG BLUE DYE-0 Colspan="6">Colspan="6"Colspan="6">Colspan="6"Colspan="6"Colspan="6">Colspan="6"Colspan="				
Part No: A563 7/8-9 +0.022 DH HHN HDG BLUE DYE-0 Description: ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue Dye Manufacture Quantity: 79,432 Specification: Amenda Specification Amenda Amenda Specification Aste specification: Amend Specification Amend Specification Amend Amend Specification Amend Specification Amend Amend Specification Aste specification Amend Amend Specification Aste specification Amend Amend Specification Aste Specification Amend Aste B18.2.2 2015 Aste F18.2.2 2015 Aste F18.2.2 2015 Aste F18.2.2 2015 Aste F18.2.2 2015 Aste F18.2.4 2015 Aste F18.2.5 2016 Certified Properties Certified Chemical Properties Sample Inspection Amenda Corspan="6">Aste S18.2.2 Pass Pass Sign C				
ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue Description: ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue Manufactured Quantity: 79,432 Specifications Specifications Specification Amend Specification Amend ASME B1.1 2003 ASME B18.2.2 2015 ASME B18.2.6 2010 ASTM A563 2015 ASME B18.2.6 2013 ASTM F606/606M 2014 ASTM F812/F812M 2012 2012 2014 Test Results Test No: 11698 Test: A563 DH Mechanical Properties Proof Load (Pass/Fail) Shape & Dimension Thread Precision Visual AS Sample Inspection Rardness Tempering Temp (800 Proof Load (Pass/Fail) Shape & Dimension Thread Precision Visual AS Sample Inspection Rardness Geridus Special Other isolation ASME B18.1.1 Pass Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu Test No: 11698 Test: 1045 1045				
ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue Dye Manufactured Quantity: 79,432 Asmend Specification Amend Specification Amend Specification Amend Specification Amend Specification Amend Specification Amend Specification Amend ASME B18.2.2 2015 ASME B18.2.2 2015 ASTM F812/F812M 2012 2015 ASTM F812/F812M 2012 2014 Sectification freefing Temp (800 (HRC) Proof (Lo2d (Pass/Fail) Shape & Dimension Thread Precision Visual AS Sample Sample 28.05 1/20 6 6 Gerdau Special Sample Sample Sample Sample Sample Sample <th< td=""></th<>				
Description: DyeManufactured Quantity: 79,432Applicable SpecificationsApplicable SpecificationAmendSpecificationAmendSpecificationASME B1.12003ASME B18.2.22015ASME B18.2.22015ASME B18.2.22015ASME B18.2.22015ASTM F23292013ASTM A5632014ASTM F812/F812/F20122014PescriptionMardnessThread PropertiesDescriptionMardnessProof Load (Pas/Fail)Shape & DimensionThread ProfVisual ASSample28.051,220Proof Load (Pas/Fail)Shape & DimensionASME B18.2.2Visual ASSample28.051,220PescriptionAsm defectoreSingle Colspan="6">Certified Charu SpecialSample28.051,220PescriptionPasSiCerSample28.05Certified Charu Special0riginCMardness <th cols<="" td=""></th>				
Description: Dye Manufactured Quantity: 79,432 Applicable Specification Specification Amend Specification Amend Specification Amend Specification Amend ASME B18.2.2 2015 ASME B18.2.2 2015 ASTM F563 ASTM A563 2014 ASTM F2329 2012 2014 ASTM F812/F812/F812/F812/F812/F812/F812/F812/				
Agen and a construct of the construct				
Applicable Specifications Specification Amend Specification Amend ASME B1.1 2003 ASME B18.2.2 2015 2015 ASME B18.2.6 2013 ASTM A563 2014 2014 ASTM F2329 2012 2012 2014 2014 ASTM F812/F812M 2012 2012 2014 2014 est Results Tempering Temp (800 (HRC) Proof Load (Pass/Fail) (ASTM Min) Shape & Dimension ASME B18.2.2 Thread Precision ASME B18.1.1 Visual AS F812 Sample Inspection 28.05 1,220 69.300 Pass Pass Pass Fata No Grade Manufacturer Origin 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
Specification Amend Specification Amend Specification Amend Specification Amend Amend Specification Q015 ASME B18.2.2 2015 2015 2014 ASTM F812/F812/N Special Special Special Off Load (Pass/Fail) Shape & Dimension Thread Precision Astes and passing and precision Special Special Pass Pass Special Special Special Special Special Special Special Special Special <td colspan="4" sp<="" td=""></td>				
ASME B1.1 2003 ASME B18.2.2 2015 2015 ASME B18.2.6 2013 ASTM A563 2015 2014 ASTM F2329 2012 ASTM F606/606M 2014 2014 ASTM F812/F812M 2012 VIENDAM VIENDAM VIENDAM VIENDAM est Results Tempering Temp (800 degree F Min) Proof Load (Pass/Fail) (ASTM Min) Shape & Dimension ASME B18.2.2 Thread Procision ASME B18.1.1 VIenda AS F812 Sample Inspection 28.05 1,220 F905/LOAG (Pass/Fail) Shape & Dimension ASME B18.2.2 Thread Procision ASME B18.2.2 VIenda AS F812 Pass Sample Inspection 28.05 1,220 69,300 Pass Pass Pass 75062745 1045 Gerdau Special Steel North America 0.400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
ASME B18.2.6 2010 ASTM A5G3 2015 ASTM F2329 2013 ASTM F606/606M 2014 ASTM F812/F812M 2012 2013 2014 ASTM F812/F812M 2012 2014 2014 Set Results Colspan="4">Colspan="4">2012 2014 2015 Set Not 11698 Fest: A563 DH Mechanical Properties Proof Load (Pass/Fail) Shape & Dimension ASME B18.2.2 Thread Precision ASME B18.1.1 Visual AS F812 Sample Inspection 28.05 1,220 Proof Load (Pass/Fail) Shape & Dimension ASME B18.2.2 Plass Plass Sample Inspection 28.05 0.1,220 0 6 NI Culspan="4">Culspan="4"Culspan="4"Culspan="4"Culspan="4">Culspan="4"Culspan="4"Culspan="4				
ASTM F2329 2013 ASTM F606/606M 2014 ASTM F812/F812/F812/F812/F812/F812/F812/F812/				
ASTM F812/F812M 2012 cest Results cest Results cest No: 11698 Test: A563 DH Mechanical Properties Description Tempering Temp (800 degree F Min) Proof Load (Pass/Fail) (ASTM Min) Shape & Dimension ASME B18.2.2 Thread Precision ASME B18.1.1 Visual AS F812 Sample Inspection 28.05 1,220 69,300 Pass Pass Pass Pass Pass Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Gerdau Special USA 0.4400 0.012 0.0028 0.2500 0.1600 0.1100				
Gest Results Gest Results Gest Results Description Hardness (HRC) Tempering Temp (800 degree F Min) Proof Load (Pass/Fail) (ASTM Min) Shape & Dimension ASME B18.2.2 Thread Precision ASME B18.1.1 Visual AS F812 Sample Inspection 28.05 1,220 69,300 Pass Pass Pass Pass Pass Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Gerdau Special America USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
Term ering Temp (800 degree F Min) Proof Load (Pass/Fail) Shape & Dimesion ASME Bis.2 Thread Projection ASME ASME Bis.2 Visual AS F812 Sample Inspection 28.05 $21,220$ $269,300$ $Pass$				
Description (HRC) degree F Min) (ASTM Min) ASME B18.2.2 ASME B18.1.1 F812 Sample Inspection 28.05 $1,220$ $69,300$ $Pass$				
Image: Constraint of the state of the s				
Inspection 28.05 1,220 69,300 Pass				
Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Gerdau Special Steel North America 0.4400 0.7300 0.012 0.0028 0.2500 0.1800 0.1100 0.1800				
75062745 1045 Gerdau Special Steel North America 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
America				
Notes				
Notes All tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.				
tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.				
tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and AST in Specifications.				
the second s				
tests are in accordance with the latest revisions of the methods prescribed in the applicable one and no nin opechications.				
ests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.				
Notes				
America				
75062745 1045 Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Gerdau Special America 0.4400 0.7300 0.012 0.0028 0.2500 0.1800 0.1100 0.1800				
Gerdau Special 75062745 Gerdau Special Steel North America 0.4400 0.7300 0.012 0.0028 0.2500 0.1800 0.1800				
75062745 1045 Gerdau Special Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Gerdau Special Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Gerdau Special Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Gerdau Special Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
75062745 1045 Gerdau Special Steel North USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Gerdau Special Steel North Armetica 0.4400 0.7300 0.012 0.0028 0.2500 0.1800 0.1100 0.1800				
Certified Chemical Analysis Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Gerdau Special Steel North America USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1800 0.1100 0.1800				
Inspection Certified Chemical Analysis Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Steel North America USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Sample Inspection 28.05 1,220 69,300 Pass Pass Pass Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Gerdau Special America 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Image: Constraint of the state of the s				
Image: Constraint of the state in the s				
Image: Constraint of the state of the s				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Sample Inspection 28.05 1,220 69,30∪ Pass Pass Pass Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Steel North America USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 09,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Inspection 28.05 1,220 69,300 Pass				
Image: Constraint of the state of the s				
Description (HRC) degree F Min) (ASTM Min) ASME B18.2.2 ASME B18.1.1 F812 Sample Inspection 28.05 $1,220$ $69,300$ $Pass$				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Description (HRC) degree F Min) (ASTM Min) ASME B18.2.2 ASME B18.1.1 F812 Sample Inspection 28.05 $1,220$ $69,300$ $Pass$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
Sample Inspection Tempering Temp (800 degree F Min) Proof Load (Pass/Fail) Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Origin Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Classes				
Sample Inspection Tempering Temp (800 degree F Min) Proof Load (Pass/Fail) Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Origin Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Classes				
Sample Inspection Tempering Temp (800 degree F Min) Proof Load (Pass/Fail) Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Origin Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Classes				
Sample Inspection Tempering Temp (800 degree F Min) Proof Load (Pass/Fail) Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Origin Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Classes				
Sample Inspection Tempering Temp (800 degree F Min) Proof Load (Pass/Fail) Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Origin Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Shape & Dimesion ASME Bis.2 Thread Procision ASME Bis.1 Visual AS F812 Sample Inspection 28.05 Classes				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Inspection Geographic field Origin C Min Asme Bis.2.2 Asme Bis.2.1 Asme Bis.1.1 Para Sample Inspection 28.05 1,220 $69,300$ Pass Pass Pass Pass Heat No Grade Manufacturer Origin C Min P S Si Cr Ni Cu 75062745 1045 Gerdau Special Asme Inspecial USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
CHRCyOdegree P MinCASIM R MinASME B18.2.2ASME B18.1.1ParaSample Inspection 28.05 $1,220$ $69,300$ PassPassPassPassHeat NoGradeManufacturerOriginCMnPSSiCrNiCuHeat NoGradeGerdau Special Steel North AmericaO.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.180				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Inspection 28.05 1,220 09,300 Pass				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Sample Inspection 28.05 1,220 69,30∪ Pass Pass Pass Heat No Grade Manufacturer Origin C Mn P S Si Cr Ni Cu 75062745 1045 Steel North America USA 0.4400 0.7300 0.012 0.0028 0.2500 0.1600 0.1100 0.1800				
$\begin{tabular}{ c c c c c c c } \hline let $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$				

Plex 6/15/16 10:37 AM dsavage Page 1

Figure A-64. 7/8-in. (22-mm) Diameter Nuts, Test No. NYT-1

HEXICO ENTERPRISE CO., LTD.

NO.355-3,SEC. 3,CHUNG SHAN ROAD,KAU-JEN,TAINAN,TAIWAN,R.O.C. TEL : 886 - 6 - 2390616 FAX : 886 - 6 - 2308947

INSPECTION CERTIFICATE

CUSTOMER	FASTENAL COMPA	NY		
PART NAME	ASTM F436 - 11 TYF	PE 1 WASHERS		
SIZE	7/8 "	_	DATE	March 18, 2015
PART NO Mfr.	W2A6C7000S6JZ2	_	REPORT NO.	1040318-26
PART NO Cust.	1133175	_	SHIPPING NO.	
MATERIAL / DIA	10B20 / 25 mm	_	ORDER NO.	220018262
HEAT(COIL) NO.	1DR73		DOCUMENT NO.	10310009
LOT QTY	16,800 PCS	_	LOT NO.	432C7FNG1
STANDARD OF	SAMPLING SCHEME	ANSI / ASME B	18.18-2011	
HARDNESS TEST	METHOD	ASTM F606-201	0	
COATING TEST N	IETHOD	ASTM B499-200	9	

		-				_	DIMENS	SIONS IN inch
	INSPECTION ITEM		CIFICAT	TION	TEST INSPECTIC		N RESULTS	INSPECTION
	INSPECTION HEM	SPEA	CIFICAL	TION	QTY	MIN.	MAX.	EQUIPMENT
1	OUTSIDE DIAMETER	1.7180	-	1.7820	8	1.7394	1.7472	Caliper
2	INSIDE DIAMETER	0.9380	-	0.9700	8	0.9539	0.9567	Caliper
3	THICKNESS	0.1360	-	0.1770	8	0.1488	0.1520	Caliper
4	HARDNESS	HRC	38	- 45	5	40.0	41.4	Rockwell
5	COATING	MECH.	GALV.	53 μm	5	57.6	64.5	Magnetic
6	APPEARANCE		VISUAI	1	100	0	K	

INSPECTOR Yu Tain Lin

QC CHIEF Jing Yeh Tsao

Figure A-65. 7/8-in (22-mm) Hardened Flat Washer, Test No. NYT-1

Appendix B. Vehicle Center of Gravity Determination

¥	e: <u>5/11/2017</u> Test Name: <u>N</u>	YT-1 VIN:			
Yea	r: 2011 Make: Do	odge Model:		Ram 1500	
Vehicle CG	Determination				
		-	Vertical CG		
VEHICLE	Equipment	(lb)	(in.)	(lb-in.)	i i i i i i i i i i i i i i i i i i i
+	Unballasted Truck (Curb)	5071	28	141988	l
+	Hub	19	14 1/2	275.5	I
+	Brake activation cylinder & fram		24 1/4	169.75	I
+	Pneumatic tank (Nitrogen)	27	26 1/2	715.5	
+	Strobe/Brake Battery	5	23 1/2	117.5	I
+	Brake Receiver/Wires	5	51 3/4	258.75	I
+	CG Plate including DAS	42	29 1/2	1239	i i
-	Battery	-43	40	-1720	I
-	Oil	-11	26	-286	1
-	Interior	-94	26 3/4	-2514.5	I
.	Fuel	-169	19 3/4	-3337.75	
-	Coolant	-16	29	-464	Ì
-	Washer fluid	-3	34	-102	I
+	Water Ballast (In Fuel Tank)	99	19 3/4	1955.25	I
+	Onboard Supplemental Battery	12	24	288	I
	enseara cappienterna satter)				
	ded equipment to vehicle, (-) is removed eq Estimated Total We		33 1/2	1105.5 139688.5	
Note: (+) is add	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca	uipment from vehicle eight (Ib) 4984	33 1/2		
Note: (+) is add Vehicle Din	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca nensions for C.G. Calculations	uipment from vehicle eight (Ib) 4984 tion (in.) 28.0274]	139688.5	
Note: (+) is add Vehicle Din	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca nensions for C.G. Calculations e:140 1/4 in.	uipment from vehicle eight (Ib) 4984	66 1/2		
Note: (+) is add Vehicle Din	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca nensions for C.G. Calculations e:140 1/4 in.	uipment from vehicle eight (Ib) 4984 tion (in.) 28.0274 Front Track Width:	66 1/2	139688.5 in.	
Note: (+) is add Vehicle Din Wheel Base	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca nensions for C.G. Calculations e: <u>140 1/4</u> in.	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width:	<u>66 1/2</u> 67 3/4	139688.5 in. in.	
Note: (+) is add Vehicle Din Wheel Base Center of G	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca nensions for C.G. Calculations e: <u>140 1/4</u> in.	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width:	66 1/2 67 3/4 Test Inertial	139688.5 in. in.	
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca nensions for C.G. Calculations e: 140 1/4 in. I Gravity 2270P MASH Ta Weight (Ib) 5000 ± 110	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width:	66 1/2 67 3/4 Test Inertial 5000	139688.5 in. in.	0.
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locations e: 140 1/4 in. iravity 2270P MASH Ta Weight (Ib) 5000 ± 110 I CG (in.) 63 ± 4	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width:	66 1/2 67 3/4 Test Inertial 5000 61.56975	139688.5 in. in.	0. -1.4302
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locations e: 140 1/4 in. in. Gravity 2270P MASH Ta Weight (Ib) 5000 ± 110 ICG (in.) 63 ± 4 (in.) NA	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width:	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795	139688.5 in. in.	0. -1.4302 N/
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locations e: 140 1/4 in. Weight (Ib) 5000 ± 110 ICG (in.) 63 ± 4 (in.) 28 or gree	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975	139688.5 in. in.	0. -1.4302 N
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long.CC	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca mensions for C.G. Calculations e: 140 1/4 in. Weight (Ib) 5000 ± 110 ICG (in.) 63 ± 4 (in.) CG is measured from front axle of test vehicle	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03	139688.5 in. in.	0. -1.4302 N
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long.CC	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locations e: 140 1/4 in. Weight (Ib) 5000 ± 110 ICG (in.) 63 ± 4 (in.) 28 or gree	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03	139688.5 in. in.	0. -1.4302 N/
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long.CC	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locat mensions for C.G. Calculations e: 140 1/4 in. in. Gravity 2270P MASH Ta Weight (Ib) 5000 ± 110 ICG (in.) (in.) NA (in.) G is measured from front axle of test vehicl CG measured from centerline - positive to vehicle	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03	139688.5 in. in.	0. -1.4302 N 0.0273
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long.CC Note: Lateral C	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locations nensions for C.G. Calculations e: 140 1/4 in. in. Gravity 2270P MASH Ta Weight (Ib) 5000 ± 110 I CG (in.) 63 ± 4 (in.) 28 or gree G is measured from front axle of test vehicl CG measured from centerline - positive to v GHT (Ib)	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03	139688.5 in. in.	0. -1.4302 N. 0.0273
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locations mensions for C.G. Calculations e: 140 1/4 in. Bravity 2270P MASH Ta Weight (Ib) 5000 ± 110 I CG (in.) 63 ± 4 (in.) 28 or gree G is measured from front axle of test vehicle CG measured from centerline - positive to v GHT (Ib) Left Right	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03 r) side TEST INER	139688.5 in. in. TIAL WEIGH	0. -1.4302 N. 0.0273 IT (Ib) Right
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long.CC Note: Lateral C CURB WEIC Front	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locar nensions for C.G. Calculations e: 140 1/4 in. Bravity 2270P MASH Ta Weight (Ib) 5000 ± 110 I CG (in.) 63 ± 4 (in.) 28 or gree G is measured from front axle of test vehicle CG measured from centerline - positive to v GHT (Ib) Left Right 1481 1388	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03	139688.5 in. in. TIAL WEIGH Left 1386	0. -1.4302 N, 0.0273 IT (Ib) Right 1419
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Local mensions for C.G. Calculations e: 140 1/4 in. Bravity 2270P MASH Ta Weight (Ib) 5000 ± 110 I CG (in.) 63 ± 4 (in.) 28 or gree G is measured from front axle of test vehicle CG measured from centerline - positive to v GHT (Ib) Left Right	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03 r) side TEST INER	139688.5 in. in. TIAL WEIGH	0. -1.4302 N/ 0.0273 IT (Ib) Right
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long.CC Note: Lateral C CURB WEIC Front Rear	Ided equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Loca mensions for C.G. Calculations e: 140 1/4 in. in. inavity 2270P MASH Ta Weight (Ib) 5000 ± 110 ICG (in.) 63 ± 4 (in.) ICG (in.) 63 ± 4 (in.) 28 or gree G is measured from centerline - positive to v GHT (Ib) Left Right 1481 1388 1099 1103	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03) side TEST INER Front Rear	139688.5 in. in. TIAL WEIGH Left 1386 1100	Right 1419 1095
Note: (+) is add Vehicle Din Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long.CC Note: Lateral C CURB WEIC Front	ded equipment to vehicle, (-) is removed eq Estimated Total We Vertical CG Locar nensions for C.G. Calculations e: 140 1/4 in. Bravity 2270P MASH Ta Weight (Ib) 5000 ± 110 I CG (in.) 63 ± 4 (in.) 28 or gree G is measured from front axle of test vehicle CG measured from centerline - positive to v GHT (Ib) Left Right 1481 1388	uipment from vehicle eight (lb) 4984 tion (in.) 28.0274 Front Track Width: Rear Track Width: Ingets	66 1/2 67 3/4 Test Inertial 5000 61.56975 0.18795 28.03) side TEST INER Front	139688.5 in. in. I I Left 1386 1100 2805	0. -1.4302 N/ 0.0273 IT (Ib) Right 1419

Figure B-1. Vehicle Mass Distribution, Test No. NYT-1

Appendix C. Static Soil Tests

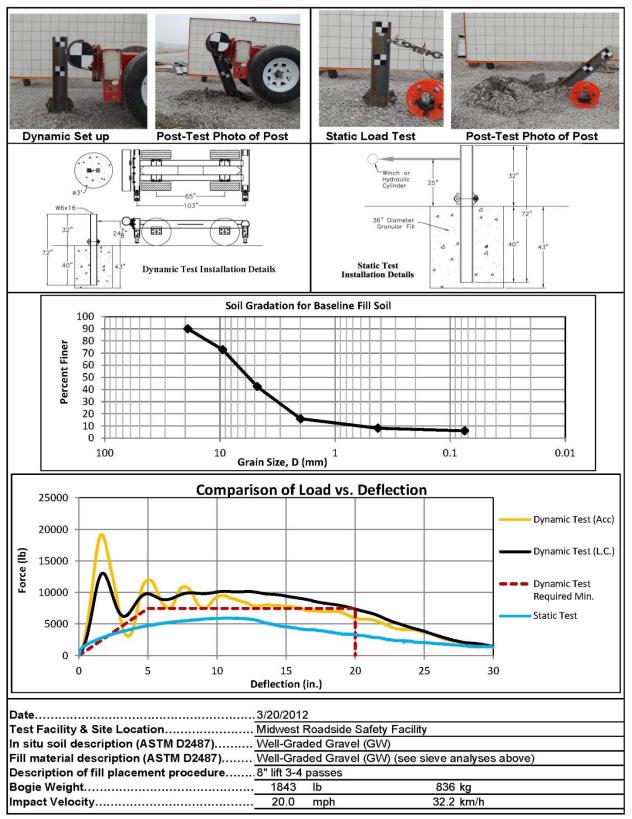


Figure C-1. Soil Strength, Initial Calibration Tests

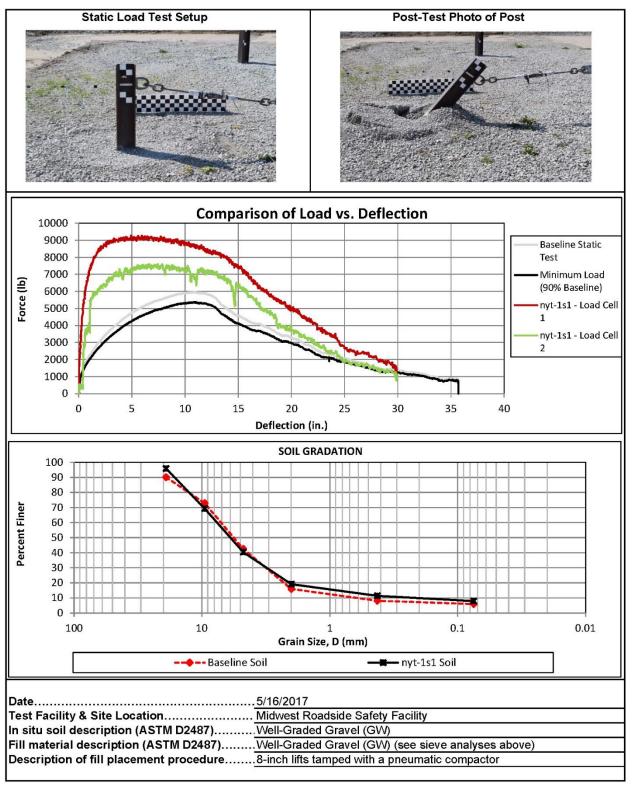


Figure C-2. Static Soil Test, Test No. NYT-1

Appendix D. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicle used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.

	Date: Year:	5/11/2017 2011		Fest Name: Make:	NY Do	T-1 dge		1D7R	B1GP3BS5 Ram 1500	53913		
POINT (m.) (m.) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
1 2884 2524 4.312 2873 2880 3.276 0.162 0.525 1036 1173 2 28607 18.444 48.68 28.50 -1.8914 -3.887 -0.077 0.461 0.949 1.067 3 27.633 -12.477 -10.683 19.560 -13.647 -23.240 -23.86 -0.031 0.468 0.750 0.702 0.906 4 19.562 -24.752 -10.683 19.564 -12.733 -7.720 0.022 -0.442 0.868 0.774 0.563 0.774 7 12.567 -25.674 -11.299 12.574 25.674 -11.291 15.62 0.661 0.161 -0.447 0.683 0.784 0.663 9 12.194 -10.774 -5.663 12.286 -10.999 0.111 0.422 0.661 0.161 -0.447 0.633 0.633 0.633 0.633 0.530 0.689 11 7.725 0.622 0.616 0.111 0.444 0.434 0.434 0.633 0.205 0.533 0.633 <	DOWLT	28.92 million	20-20 22 22	and the second second	10 St. 10	and and	and the second		242	200 - 200 Store	242 (States - 24	
2 28.607 -18.434 -4.836 28.530 -18.914 -3.887 -0.077 -0.481 0.546 0.202 0.925 3 27.633 -12.280 -0.836 0.957 0.071 0.481 0.9255 5 19.860 -18.104 -9.367 19.744 -18.868 -8.656 0.104 -0.565 0.711 0.925 6 19.952 -12.280 -8.305 19.614 -12.723 -7.720 0.022 -0.442 0.566 0.714 6 19.952 -12.280 -8.305 19.614 -12.723 -7.720 0.022 -0.442 0.566 0.774 7 12.677 -2.6674 -11.299 12.674 -2.820 -0.020 -0.437 0.534 0.668 10 7.645 -2.580 -11.500 7.756 -2.923 -6.749 -0.149 -0.333 0.170 0.374 0.452 0.614 -0.333 0.170 0.374 12 7.381 -12.261 -5.939 7.263 +6.749 -0.169 -0.333 0.170 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
3 27.633 -12.477 3.000 27.580 -13.047 -2.288 -0.063 -0.670 0.702 0.906 4 19582 -24.752 -10.683 19.860 -18.104 -9.367 19.794 -2.8240 -9.886 -0.014 -0.488 0.734 0.734 6 19.582 -12.280 -8.305 19.614 -12.723 -7.720 0.022 -0.442 0.586 0.711 0.914 6 19.582 -12.67 -2.567 -12.091 10.661 0.018 -0.447 0.637 0.773 7 12.567 -2.5674 -11.299 12.574 -2.567 12.283 12.288 10.999 0.111 0.434 0.608 0.675 10 7.645 -25.800 -11.502 7.756 -22.828 10.999 0.111 0.484 0.408 0.462 0.615 12 7.381 -12.261 -6.999 0.270 -22.983 6.749 -0169 -0.343 0.267 10.331 0.170 0.374 12 7.381 -12.61 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
5 198690 -18.104 9.367 19794 -18.686 -8.656 0.104 -0.655 0.711 0.914 6 19.692 -12.200 -8.305 19.614 112.723 -77720 0.002 -0.442 0.685 0.734 7 12.557 -25.674 -11.299 12.2449 -19.144 -9.428 0.062 -0.347 0.534 0.689 9 12.184 -10.774 -8.663 12.285 -11.150 -8.168 0.084 -0.499 0.503 0.689 10 7.645 -25.800 -11.1502 7.756 -22.953 -6.749 -0.169 -0.341 0.452 0.615 12 7.381 -12.236 -5.509 -0.207 -12.933 -6.749 -0.169 -0.331 0.452 0.615 13 -0.011 -2.610 -6.999 -0.270 -1.891 5.500 0.014 -0.333 0.170 0.314 0.452 0.615 14 -0.231 -5.606 0.0142 -0.233 0.270 -2.494 2.633 0.527	-											
6 19.892 -12.280 -8.305 19.614 -12.723 -7.720 0.022 -0.442 0.886 0.774 7 12.557 -18.707 -9.962 12.544 -18.144 -9.428 0.062 -0.437 0.534 0.683 9 12.144 -10.774 8.663 12.289 -11.156 -8.158 0.062 -0.437 0.534 0.683 10 7.645 -25.800 -11.050 -7.566 -9.28258 -10.999 0.111 -0.498 0.452 0.661 12 7.381 -12.286 -8.33 -11.65 -8.639 0.044 -0.384 0.408 0.452 0.663 14 -0.281 -16.468 5.671 -0.267 -25.93 -6.749 -0.169 -0.343 0.250 0.486 14 -0.281 15.735 4.654 26.703 15.371 6.128 -0.340 0.384 1.481 1.562 16 30.502 21.603 4.264 28.71 -1.1801 5.56 0.942 0.742 2.943 17 <td></td> <td>24</td>											24	
7 12.857 -26.674 -11.299 12.874 -28.120 -10.661 0.018 -0.447 0.637 0.634 0.683 9 12.194 -10.774 -8.663 12.289 -11.166 -8.168 0.084 -0.384 0.406 0.566 10 7.645 -28.800 -11.602 7.766 -28.258 -10.999 0.111 -0.499 0.503 0.689 11 7.425 -19.019 -10.192 7.506 -19.427 -9740 0.084 -0.499 0.503 0.689 11 7.425 -19.019 -0.102 7.566 -19.427 -9740 0.084 -0.499 0.503 0.682 0.615 12 7.381 -12.326 -8.353 7.426 -12.693 -8.639 0.044 -0.337 0.537 0.514 0.452 0.615 13 -0.01 -22.610 -6.999 -0.270 -2.953 6.749 -0.169 0.431 0.525 0.442 0.502 1.633 0.267 1.537 1.527 1.328 1.5801 1.560 <td< td=""><td></td><td></td><td>11/1/12 1828 113</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS1021201. 1721</td><td>827626262 - 72</td></td<>			11/1/12 1828 113							NS1021201. 1721	827626262 - 72	
8 12387 -1877 9-962 12449 -19144 -9428 0.062 -0437 0.634 0.663 9 12194 -10774 -8.663 12289 -11158 -8.168 0.094 -0.384 0.406 0.566 10 7.645 -22.800 -11.602 7.756 -20.258 -10.999 0.111 -0.498 0.452 0.669 11 7.425 -13.019 -10.192 7.508 -12.693 -8.639 0.044 -0.384 0.408 0.452 0.615 12 7.381 -12.2326 -8.957 1-2.693 -8.639 0.044 -0.303 0.170 0.374 14 -0.281 -15.861 -5.500 0.014 -0.333 0.170 0.374 15 27.043 15.735 4.654 26.703 15.371 6.136 -0.227 2.963 -0.442 2.943 16 30.602 21.603 4.284 21.342 21.342 12.346 6.738 -1.637 -0.267 2.960 0.974 1.170 20	15			-							24	
9 12.194 -10.774 -8.863 112.289 -11.158 -8.188 0.094 -0.384 0.406 0.568 10 7.645 -25.800 -11.502 7.756 -26.258 -10.999 0.111 -0.469 0.503 0.689 11 7.425 -19.019 -10.192 7.508 -19.427 -9.740 0.084 -0.408 0.462 0.689 12 7.381 -12.236 -8.999 -0.277 -22.953 -6.749 -0.169 -0.343 0.250 0.456 13 -0.101 -2.2610 -5.999 -0.277 -15.801 -5.00 0.014 -0.361 0.257 0.330 0.250 0.456 14 -0.281 -15.681 -5.050 0.014 -0.364 1.481 1.562 16 30.502 21.603 4.284 28.871 21.346 6.788 -1.631 -0.257 2.503 2.993 17 27.886 26.76 5.298 2.5231 2.573 6.040 -2.655 -0.942 0.742 2.913 18				Star State - Charles			11.427.627.027.942.0					
10 7.765 -26.288 -10.999 0.111 -0.459 0.503 0.683 11 7.425 -19.019 -10.192 7.508 -19.427 -9.740 0.084 -0.408 0.452 0.615 12 7.381 -12.283 -8.930 0.0270 -22.953 -6.749 -0.169 -0.343 0.250 0.445 13 -0.101 -22.610 -6.999 -0.270 -22.953 -6.749 -0.169 -0.343 0.250 0.445 14 -0.281 -15.488 -5.607 -0.264 -13.831 -0.161 -0.343 0.250 0.456 16 30.502 21.633 4.284 28.871 -21.386 -16.788 -16.31 -0.267 25.03 2999 17 27.886 26.736 5.288 22.521 25.733 6.040 -2.655 -0.942 0.742 2913 18 19.778 12.677 1.882 19.632 12.174 -0.010 0.076 -0.401 1.986 0.170 20 21.462 1.576 -1												
12 7.81 -12.226 -8.963 7.426 -12.293 -6.749 -0.169 -0.341 0.250 0.445 13 -0.101 -22.610 -6.999 -0.270 -15.801 -5.600 0.014 -0.333 0.250 0.456 14 -0.281 15.468 -5.671 -0.267 -15.801 -5.600 0.014 -0.333 0.170 0.374 15 27.043 15.755 4.654 26.703 15.371 6.135 -0.340 -0.364 1.481 1.562 16 30.502 21.603 4.284 28.171 21.346 6.788 -1.631 -0.257 2.503 2.999 17 27.886 26.736 5.298 25.231 25.793 6.040 -2.665 -0.942 0.742 2.913 18 19.778 12.677 1.882 19.832 12.168 2.856 -0.146 -0.509 0.974 1.109 21 13.748 10.860 -1.968 13.826 10.464 -0.988 0.078 -0.406 0.400 0.762								1000 1400 Dis 78, 11, 100			100020001200002	
13 -0.101 -22.610 -6.999 -0.270 -22.953 -6.749 -0.169 -0.343 0.250 0.456 14 -0.281 -15.468 -5.671 -0.267 -15.801 -5.500 0.014 -0.333 0.170 0.374 15 22.7043 15.735 4.654 26.703 15.371 6.135 -0.267 -2503 2.999 17 27.7886 26.736 5.298 25.231 25.793 6.040 -2.665 -0.942 0.742 2.913 18 19.778 12.677 1.882 19.632 12.168 2.856 -0.146 -0.509 0.974 1.109 19 21.462 21.576 -1.107 21.637 21.174 -0.010 0.076 -0.401 1.096 1.170 20 21.470 29.130 0.295 21.513 28.33 1.161 0.043 0.297 0.856 0.907 21 13.748 10.800 -1.588 13.826 10.454 0.998 0.078 0.640 0.762 22 14.824 <td></td> <td></td> <td>2012 0 2012 0 2010</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2012 0 2012 0 2010									
14 -0.281 -15.661 -0.267 -15.801 -5.500 0.014 -0.333 0.170 0.374 15 27.043 15.735 4.654 28.703 15.371 6.135 -0.340 -0.364 1.481 1.562 16 30.502 21.603 4.284 28.871 21.346 6.788 -1.631 -0.267 2.503 2.991 17 27.886 26.736 5.298 25.231 25.793 6.040 -2.665 0.942 0.742 2.913 18 19.778 12.677 1.882 19.632 12.184 2.866 -0.146 -0.509 0.974 1.109 20 21.470 29.130 0.295 21.513 21.174 -0.010 0.076 -0.401 1.066 1.170 20 21.470 29.130 0.295 1.012 -1.687 0.182 0.038 0.078 0.406 0.640 0.762 21 13.748 10.860 -1.586 13.826 10.484 -0.986 0.032 0.176 0.230 0.468 0.542		6									2)	
15 27.043 15.735 4.654 28.703 15.371 6.135 -0.340 -0.344 1.481 1.562 16 30.502 21.603 4.284 28.871 21.346 6.788 -1.631 -0.257 2.503 2.999 17 27.886 26.736 5.298 25.231 25.733 6.040 -2.656 -0.942 0.742 2.913 18 19.778 12.677 1.882 19.632 12.188 2.856 -0.146 -0.509 0.974 1.109 20 21.470 29.130 0.296 21.513 25.833 1.161 0.043 -0.297 0.856 0.907 21 13.744 10.860 -1.598 13.826 10.454 -0.938 0.0406 0.640 0.762 22 14.824 21.343 -2.233 15.099 21.012 -1.687 0.176 0.230 0.458 0.542 24 5.731 12.979 4.032 5.934 12.680 -3.760 0.203 0.299 0.272 0.244 0.383				1000 (100) (100) (1000 (100) (1000 (1000 (1000 (1000 (100) (1000 (1000 (1000 (1000 (1000 (1000 (1000 (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (1000 (100) (1000 (100) (1000 (100) (200 Ph 200 Ph 200 Ph 200 Ph 200 Ph						22 22 22 23 24 24 25 28 20 20 20 20 20 20 20 20 20 20 20 20 20	
16 30.502 21.603 4.284 28.871 21.346 6.788 -1.631 0.257 2.503 2.993 17 27.886 26.736 5.298 25.231 25.793 6.040 -2.665 -0.942 0.742 2.913 18 19.776 1.2677 1.882 19.682 12.188 2.866 -0.146 -0.509 0.974 1.109 20 21.470 29.130 0.296 21.513 28.833 1.151 0.043 -0.297 0.856 0.974 21 13.744 10.860 -1.598 13.826 10.454 -0.958 0.078 -0.406 0.640 0.762 22 14.824 21.343 -2.223 15.078 29.155 0.787 15.254 28.926 -0.329 0.176 -0.230 0.458 0.542 24 5.731 12.979 -4.032 5.934 12.680 -3.760 0.203 -0.299 0.272 0.452 25 6.563 20.888 -2.536 6.678 20.616 -2.292 0.115 -0.272	12								2 2		92	
17 27.886 26.736 5.298 25.231 25.793 6.040 -2.665 0.942 0.742 2.913 18 19.778 12.677 1.882 19.632 12.168 2.866 -0.464 -0.609 0.974 1.109 19 21.462 21.576 1.107 21.587 21.174 -0.010 0.076 -0.401 1.096 1.170 20 21.470 29.130 0.295 21.513 28.833 1.151 0.043 -0.297 0.856 0.907 21 13.744 10.860 -1.598 13.826 10.454 -0.958 0.046 0.640 0.762 22 14.824 21.343 -2.223 15.009 21.012 -1.687 0.176 -0.329 0.478 0.465 0.542 24 5.731 12.979 4.032 5.934 12.680 -3.760 0.230 0.299 0.272 0.452 25 0.565 0.083 0.287 0.371 0.531 0.531 0.531 0.531 0.531 0.237 0.391												
19 21.462 21.576 -1.107 21.637 21.174 -0.010 0.076 -0.401 1.096 1.170 20 21.470 29.130 0.295 21.513 28.833 1.161 0.043 -0.297 0.856 0.907 21 13.748 10.880 -1.598 13.826 10.043 -0.297 0.856 0.907 22 14.824 21.343 -2.223 15.009 21.012 -1.687 0.185 -0.331 0.537 0.657 23 15.078 29.155 -0.767 15.254 28.926 -0.329 0.176 -0.230 0.458 0.542 24 5.731 12.979 -4.032 5.934 12.680 -3.760 0.203 0.299 0.272 0.4452 25 6.563 20.888 -2.536 6.678 20.616 -2.292 0.115 0.272 0.244 0.333 26 7.120 29.011 -0.987 7.243 28.725 -0.760 0.123 0.036 0.137 0.039 0.165 28 <	17	27.886	26.736	5.298	25.231	25.793	6.040	-2.655	-0.942	0.742	2.913	
20 21.470 29.130 0.295 21.513 28.833 1.151 0.043 -0.297 0.856 0.907 21 13.748 10.860 -1.598 13.826 10.454 -0.958 0.078 -0.406 0.640 0.762 22 14.824 21.343 -2.223 15.009 21.012 -1.687 0.185 -0.331 0.537 0.657 23 15.078 29.155 -0.787 15.254 28.926 -0.329 0.176 -0.230 0.458 0.542 24 5.731 12.979 -4.032 5.934 12.680 -3.760 0.203 -0.299 0.272 0.452 25 6.563 20.888 -2.536 6.678 20.616 -2.292 0.115 -0.272 0.244 0.383 26 7.120 29.011 -0.987 7.243 28.725 -0.750 0.123 -0.286 0.237 0.391 27 -0.260 15.231 0.218 -0.176 15.093 0.258 0.083 -0.137 0.039 0.165 28 -0.046 23.081 1.762 0.015 22.826 1.876 0.061 -0.254 0.114 0.285 0000 + 0.254 0.114 0.285												
21 13.748 10.860 -1.598 13.826 10.454 -0.958 0.078 -0.406 0.640 0.762 22 14.824 21.343 -2.233 15.078 20.185 -0.331 0.537 0.657 23 15.078 29.155 0.787 15.254 28.926 -0.329 0.176 -0.230 0.466 0.640 0.542 24 5.731 12.979 4.032 5.934 12.680 -3.760 0.203 -0.299 0.272 0.452 25 6.663 20.888 -2.536 6.678 20.616 -2.292 0.115 -0.272 0.244 0.383 26 7.120 29.011 0.987 7.243 28.725 -0.750 0.123 -0.266 0.237 0.391 27 -0.260 15.231 0.218 -0.176 15.093 0.258 0.083 -0.137 0.039 0.165 28 -0.046 23.081 1.762 0.015 22.826 1.876 0.061 -0.254 0.114 0.285 10 1												
22 14.824 21.343 -2.223 15.009 21.012 -1.687 0.186 -0.331 0.637 0.667 23 15.078 29.155 -0.787 15.254 28.926 -0.329 0.176 -0.230 0.458 0.542 24 5.731 12.979 4.032 5.934 12.680 -3.760 0.203 -0.299 0.272 0.452 25 6.563 20.888 -2.536 6.678 20.616 -2.292 0.115 -0.272 0.244 0.383 26 7.120 29.011 -0.987 7.243 28.725 -0.750 0.123 -0.286 0.237 0.391 27 -0.260 15.231 0.218 -0.176 15.093 0.258 0.083 -0.137 0.039 0.165 28 -0.046 23.081 1.762 0.015 22.826 1.876 0.061 -0.254 0.114 0.285 28 -0.046 23.081 1.762 0.15 2.2826 1.876 0.061 -0.254 0.114 0.285 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
23 15.078 29.155 -0.787 15.254 28.926 -0.329 0.176 -0.230 0.458 0.542 24 5.731 12.979 -4.032 5.934 12.680 -3.760 0.203 -0.299 0.272 0.452 25 6.663 20.888 -2.536 6.678 20.616 -2.292 0.115 -0.272 0.244 0.383 26 7.120 29.011 -0.987 7.243 28.725 -0.750 0.123 -0.286 0.237 0.391 27 -0.260 15.231 0.218 -0.176 15.093 0.258 0.083 -0.137 0.039 0.165 28 -0.046 23.081 1.762 0.015 22.826 1.876 0.061 -0.254 0.114 0.285 0 4 5 6 7 8 9 10 11 12 11 14 0.222 13 0.114 0.224 0.114 0.225 0 10 11 12 24 25 26 0.0017 0.00		1.	1000 C 101 C 102 C 102 C 11		100000000000000000000000000000000000000	PER INCOMPOSITION CONTRACTOR	and a state of the second s	10 M. V. 10 M LT X 100 11 M		100003030 201209011	2212225120 35520	
25 6.563 20.888 -2.536 6.678 20.616 -2.292 0.115 -0.272 0.244 0.383 26 7.120 29.011 -0.987 7.243 28.725 -0.750 0.123 -0.286 0.237 0.391 27 -0.260 15.231 0.218 -0.176 15.093 0.258 0.083 -0.137 0.039 0.165 28 -0.046 23.081 1.762 0.015 22.826 1.876 0.061 -0.254 0.114 0.285 1 2 3 15 17 16 1 19 20 1 2 3 15 17 18 19 20 21 22 23 10 11 12 24 25 26 26 DOOR DOOR 24 25 26 DOOR									C. RECORDENCE (1998) 1			
26 7.120 29.011 -0.987 7.243 28.725 -0.750 0.123 -0.286 0.237 0.391 27 -0.260 15.231 0.218 -0.176 15.093 0.258 0.083 -0.137 0.039 0.165 28 -0.046 23.081 1.762 0.015 22.826 1.876 0.061 -0.254 0.114 0.285 DASHBOARD 4 5 6 15 15 17 16 19 20 18 21 22 23 10 11 12 24 25 26 DOOR DOOR DOOR 24 25 26 DOOR DOOR DOOR DOOR 24 25 26 DOOR <												
27 -0.260 15.231 0.218 -0.176 15.093 0.258 0.083 -0.137 0.039 0.166 28 -0.046 23.081 1.762 0.015 22.826 1.876 0.061 -0.254 0.114 0.285 DASHBOARD 1 2 3 15 17 4 5 6 18 19 20 18 19 20 18 21 22 23 10 11 12 24 25 26 DOOR		110000000000000000000000000000000000000										
28 -0.046 23.081 1.762 0.015 22.826 1.876 0.061 -0.254 0.114 0.285 DASHBOARD 1 2 3 15 17 4 5 6 18 19 20 10 11 12 21 22 23 000R 10 11 12 24 25 26		4 10000000 - 20000 - 10					1 10000 1000 10			100776 D0000000		
DASHBOARD 1 2 3 4 5 6 7 8 9 10 11 12 24 25 26 DODR	-											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.010	20.001	1.102	0.010	22.020	1.010	0.001	0.201	0.111	0.200	
	DOOR-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										

Figure D-1. Floor Pan Deformation Data – Set 1, Test No. NYT-1

Figure D-2. Floor Pan Deformation Data – Set 2, Test No. NYT-1

	Date: <u>5/11/2017</u> Year: <u>2011</u>			est Name: Make:	Do	NYT-1 Dodge		1D7RB1GP3BS553913 Ram 1500			
						POST CRU RUSH - SET					
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)
DASH	1	11.503	-22.780	24.219	10.400	-23.775	24.930	-1.103	-0.995	0.712	1.647
	2	10.481	-4.351	25.110	8.631	-5.538	25.624	-1.850	-1.187	0.515	2.258
	3	13.827	13.335	28.147	11.080	12.071	29.580	-2.747	-1.264	1.434	3.346
	4	9.180	-20.747	10.299	8.042	-21.443	10.522	-1.138	-0.695	0.223	1.352
	5	8.007	-2.502	14.015	6.424	-3.439	14.521	-1.583	-0.937	0.507	1.908
	6	10.192	14.644	18.655	7.663	13.394	20.175	-2.530	-1.249	1.520	3.205
SIDE PANEL	7	21.337	-32.571	-0.465	21.072	-33.064	0.408	-0.264	-0.493	0.873	1.037
	8	24.819	-32.513	-0.793	24.622	-32.990	0.182	-0.198	-0.477	0.975	1.103
		21.871	-31.681	-4.519	21.715	-32.181	-3.582	-0.156	-0.500	0.936	1.073
IMPACT SIDE DOOR	10	-12.993	-37.095	14.560	-13.563	-36.879	14.761	-0.570	0.216	0.201	0.642
	11 12	-1.351 9.569	-36.941 -36.785	14.747 14.841	-1.836 8.969	-36.947 -36.994	15.232 15.544	-0.485	-0.006 -0.209	0.485	0.686
	12	-7.043	-36.785	-3.873	-7.259	-35.003	-3.463	-0.800	-0.209	0.703	0.947
	13	-0.903	-34.930	-3.985	-1.057	-35.285	-3.631	-0.154	-0.047	0.410	0.400
	15	5.925	-34.766	-3.717	5.742	-35.035	-3.172	-0.184	-0.269	0.545	0.635
	16	2.825	-29.540	36.097	1.920	-28.193	36.066	-0.905	1.347	-0.031	1.623
ROOF	10	5.537	-18.463	38.540	4.476	-16.879	37.613	-1.061	1.584	-0.927	2.120
	18	6.329	-8.085	40.650	5.100	-6.431	38.927	-1.229	1.654	-1.722	2.686
	19	5.284	4.653	43.066	3.927	6.494	40.447	-1.357	1.840	-2.619	3.476
	20	2.857	14.848	44.515	1.271	16.726	41.408	-1.586	1.879	-3.107	3.962
	21	-4.679	-28.408	39.330	-5.588	-26.839	39.210	-0.909	1.569	-0.120	1.817
	22	-3.161	-17.509	41.956	-4.094	-15.920	41.227	-0.933	1.589	-0.729	1.981
	23	-2.155	-8.140	43.787	-3.212	-6.461	42.577	-1.057	1.679	-1.211	2.324
	24	-2.145	2.474	45.541	-3.057	4.274	43.825	-0.912	1.800	-1.716	2.649
	25	-3.928	11.613	46.908	-4.927	13.338	45.078	-0.999	1.725	-1.829	2.705
	26	-8.150	-27.945	39.777	-9.064	-26.367	39.625	-0.914	1.578	-0.152	1.830
	27	-7.815	-17.557	42.357	-8.757	-15.930	41.769	-0.943	1.627	-0.588	1.970
	28	-7.178	-7.994	44.372	-8.177	-6.246	43.402	-0.999	1.748	-0.969	2.234
	29 30	-6.153 -7.342	2.279 10.940	45.962 47.254	-7.164 -8.347	4.143 12.770	44.527 45.494	-1.012 -1.005	1.864 1.830	-1.436 -1.761	2.561 2.731
A PILLAR	31 32	2.229 8.777	-33.847 -34.741	33.098 29.828	1.425 7.913	-32.740 -34.057	33.317 30.328	-0.804 -0.864	1.107 0.684	0.219	1.386 1.210
	32	14.208	-34.741	29.828	13.456	-34.037	26.689	-0.864	0.884	0.604	1.210
	34	14.208	-35.590	23.283	17.203	-35.459	24.037	-0.863	0.318	0.754	1.153
B PILLAR	35	-20,563	-35.232	16.004	-20.965	-34.484	16.043	-0.402	0.747	0.039	0.850
	36	-23.935	-35.282	16.220	-24.390	-34.479	16.153	-0.455	0.803	-0.067	0.830
	37	-24.214	-35.536	23.083	-24.826	-34.494	23.110	-0.612	1.042	0.027	1.209
	38	-21.248	-35.518	23.065	-21.940	-34.524	23.054	-0.692	0.994	-0.011	1.211
	39	-25.114	-34.046	32.478	-25.839	-32.671	32.338	-0.725	1.375	-0.140	1.561
	40	-22.136	-33.984	32.895	-22.923	-32.627	32.850	-0.787	1.357	-0.045	1.569

Figure D-3. Occupant Compartment Deformation Data – Set 1, Driver, Test No. NYT-1

	Date: <u>5/11/2017</u> Year: <u>2011</u>		Test Name: Make:		NYT-1 Dodge		VIN: Model:				
						(POST CRU RUSH - SET					
1		x	Y	z	X	Y	Z'	ΔΧ	ΔΥ	۸Z	Total ∆
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	11.477	-22.761	24.291	10.420	-23.825	25.010	-1.057	-1.063	0.719	1.663
	2	10.481	-4.363	25.134	8.608	-5.420	25.608	-1.874	-1.057	0.474	2.203
DASH	3	13.852	13.319	28.220	11.089	12.150	29.569	-2.763	-1.169	1.350	3.290
AC	4	9.192	-20.701	10.260	8.082	-21.434	10.437	-1.110	-0.732	0.178	1.342
<u> </u>	5	7.995	-2.472	14.005	6.458	-3.405	14.388	-1.537	-0.933	0.382	1.838
	6	10.180	14.662	18.732	7.696	13.478	19.998	-2.484	-1.184	1.267	3.030
	7	25.556	31.155	9.291	N/A	N/A	N/A	#VALUE!	#VALUE!		#VALUE!
SIDE PANEL	8	20.663	32.429	2.714	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE
	9	20.333	31.222	9.565	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
	10	-13.563	29.470	27.481	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
IMPACT SIDE DOOR	11	-3.008	29.315	27.498	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
L S OR	12	7.833	29.204	27.348	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
5 Q	13	-8.313	34.367	9.400	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
4di ⊐	14	0.083	34.543	9.331	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
≧	15	6.805	34.126	8.619	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE
	16	2.867	-29.539	36.087	1.912	-28.192	36.071	-0.956	1.348	-0.016	1.652
ľ	17	5.511	-18.389	38.584	4.445	-16.885	37.634	-1.066	1.504	-0.950	2.074
	18	6.306	-8.127	40.661	5.117	-6.448	38.937	-1.190	1.678	-1.724	2.684
ľ	19	5.294	4.718	43.076	3.877	6.523	40.501	-1.417	1.805	-2.575	3.449
1	20	2.868	14.892	44.516	1.264	16.704	41.413	-1.605	1.812	-3.103	3.936
ſ	21	-4.618	-28.444	39.298	-5.509	-27.003	39.171	-0.891	1.441	-0.127	1.699
ų, į	22	-3.123	-17.595	41.920	-4.155	-15.978	41.233	-1.031	1.617	-0.687	2.037
ROOF	23	-2.148	-8.175	43.774	-3.152	-6.443	42.578	-1.004	1.732	-1.196	2.332
Ř	24	-2.075	2.569	45.555	-3.095	4.328	43.850	-1.020	1.759	-1.705	2.654
1	25	-3.993	11.622	46.929	-5.003	13.417	45.095	-1.010	1.795	-1.835	2.758
1	26	-8.181	-27.927	39.786	-9.083	-26.318	39.648	-0.901	1.609	-0.138	1.849
ľ	27	-7.804	-17.565	42.369	-8.747	-15.909	41.779	-0.942	1.656	-0.590	1.995
1	28	-7.205	-7.966	44.393	-8.172	-6.235	43.416	-0.967	1.731	-0.977	2.211
1	29	-6.236	2.326	45.989	-7.157	4.016	44.543	-0.921	1.691	-1.446	2.408
	30	-7.353	11.065	47.282	-8.382	12.757	45.560	-1.029	1.692	-1.722	2.624
~	31	3.416	20.111	43.025	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE
٦¥.	32	8.976	21.859	40.296	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
A PILLAR	33	14.076	23.580	37.129	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
ш.	34	20.238	25.730	32.780	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE
	35	-20.321	27.329	27.995	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE
~	36	-23.583	27.447	27.613	N/A	N/A	N/A	#VALUE!	#VALUE!		
B PILLAR	37	-21.333	24.281	35.985	N/A	N/A	N/A	#VALUE!	#VALUE!		
Ц н	38	-24.299	24.351	35.835	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
ц.	39	-22.067	20.204	42.731	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
1	40	-24.953	20.173	42.801	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	

Passenger A Pillar, B Pillar, Side Panel, and Door are disengaged. Points could not be taken.

Figure D-4. Occupant Compartment Deformation Data – Set 1, Passenger, Test No. NYT-1

	Year: 2011			Make:	Do	Dodge		Ram 1500			
						POST CRU RUSH - SET					
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔZ (in.)	Total ∆ (in.)
	1	35.312	-15.800	29.493	34.981	-16.735	29.978	-0.331	-0.935	0.484	1.104
	2	34.384	2.512	26.846	33.195	1.349	27.346	-1.189	-1.163	0.500	1.737
공	3	37.957	20.468	26.402	35.778	19.383	27.847	-2.179	-1.085	1.445	2.831
DASH	4	32.623	-16.431	15.485	31.925	-17.132	15.469	-0.698	-0.700	-0.016	0.989
	5	31.664	2.223	15.612	30.451	1.381	16.091	-1.213	-0.842	0.480	1.552
	6	34.063	19.859	16.917	31.918	18.919	18.448	-2.146	-0.941	1.531	2.799
шШ	7	44.460	-30.258	6.828	44.502	-30.490	7.103	0.042	-0.232	0.275	0.362
SIDE PANEL	8	47.844	-30.274	6.415	47.964	-30.472	6.644	0.120	-0.198	0.230	0.326
	9	44.834	-30.137	2.746	44.924	-30.355	2.963	0.090	-0.218	0.217	0.321
Щ	10	10.425	-31.417	23.354	10.596	-31.334	23.630	0.172	0.083	0.277	0.336
IMPACT SIDE DOOR	11	22.174	-31.367	23.170	22.317	-31.391	23.477	0.144	-0.024	0.307	0.340
E O	12	33.091	-31.319	22.981	33.227	-31.448	23.264	0.135	-0.129	0.284	0.340
DOAD	13	15.928	-32.897	4.731	16.047	-32.910	4.991	0.119	-0.013	0.260	0.286
Δb	14	22.018	-33.191	4.380	22.127	-33.252	4.614	0.109	-0.061	0.234	0.265
	15	28.886	-32.827	4.495	29.007	-32.976	4.706	0.120	-0.149	0.211	0.285
	16	26.931	-20.063	42.623	27.071	-18.982	42.110	0.139	1.081	-0.513	1.204
	17 18	29.696 30.617	-8.636 1.815	42.900 42.932	29.629 30.346	-7.547 2.941	41.431 40.714	-0.068	1.089 1.126	-1.468 -2.218	1.829
	10	29.769	14.878	42.932	29.214	15.940	39.860	-0.271	1.120	-2.218	3.218
	20	27.397	25.110	42.848	29.214	26.148	39.038	-0.820	1.038	-2.967	3.619
	20	19.497	-18.320	45.742	19.892	-16.975	45.264	0.395	1.346	-0.478	1.482
Ĩr::	22	21.129	-7.109	46.209	21.341	-5.861	45.183	0.212	1.247	-1.026	1.629
ROOF	23	22.254	2.461	46.192	22.312	3.715	44.700	0.058	1.255	-1.492	1.950
R	24	22.378	13.273	45.880	22.340	14.471	43.955	-0.038	1.198	-1.925	2.268
	25	20.692	22.484	45.529	20.473	23.667	43.569	-0.219	1.183	-1.960	2.300
	26	15.961	-17.688	46.196	16.289	-16.435	45.814	0.328	1.253	-0.381	1.351
	27	16.536	-7.048	46.722	16.667	-5.780	45.961	0.131	1.268	-0.761	1.484
	28	17.275	2.807	46.860	17.340	4.033	45.739	0.065	1.226	-1.120	1.662
	29	18.322	13.201	46.455	18.281	14.396	44.894	-0.040	1.195	-1.561	1.966
	30	17.262	21.993	46.084	17.219	23.178	44.297	-0.043	1.185	-1.787	2.144
с	31	26.237	-24.858	40.500	26.474	-23.920	40.353	0.237	0.938	-0.147	0.979
Ϋ́Α	32	32.591	-26.417	37.361	32.864	-25.838	37.252	0.273	0.578	-0.108	0.649
A PILLAR	33	38.000	-27.711	33.621	38.113	-27.372	33.625	0.112	0.339	0.004	0.357
	34	41.755	-28.604	30.824	41.797	-28.465	30.901	0.042	0.139	0.077	0.165
	35	2.979	-29.246	24.565	3.155	-28.725	24.708	0.177	0.520	0.143	0.568
B PILLAR	36	-0.426	-29.218	24.820	-0.227	-28.673	25.033	0.199	0.544	0.213	0.617
Ъ	37 38	-0.506 2.473	-28.150 -28.186	31.660 31.507	-0.367 2.656	-27.404 -27.445	31.847 31.700	0.139	0.745 0.741	0.187	0.781
III	39	-1.104	-26.160	40.605	-0.830	-27.445	40.658	0.183	1.013	0.193	1.051
	40	1.860	-24.892	40.005	2.036	-23.879	40.058	0.274	1.013	0.052	1.031
		1.000	-1.//2	10.070	2.000	20.740	11.040	0.170	1.520	0.000	1.941

Figure D-5. Occupant Compartment Deformation Data – Set 2, Driver, Test No. NYT-1

	Date: <u>5/11/2017</u> Year: <u>2011</u>		<u>,</u> т	Test Name: NYT-1 Make: Dodge		T-1 dge	VIN: Model:				
						POST CRU RUSH - SET					
		х	Y	z	X	Ϋ́	Z'	ΔΧ	ΔΥ	۵Z	Total ∆
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	35.315	-15.855	29.485	34.988	-16.840	29.951	-0.327	-0.985	0.467	1.138
	2	34.389	2.456	26.824	33.144	1.383	27.285	-1.244	-1.073	0.461	1.706
DASH	3	37.914	20.362	26.386	35.782	19.333	27.842	-2.133	-1.029	1.456	2.780
DA	4	32.631	-16.383	15.463	31.923	-17.122	15.464	-0.708	-0.739	0.001	1.023
1	5	31.665	2.202	15.618	30.456	1.402	16.114	-1.209	-0.800	0.496	1.532
'	6	34.062	19.881	16.848	31.921	19.004	18.395	-2.141	-0.878	1.547	2.783
SIDE PANEL	7	49.233	34.139	4.144	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
	8	44.164	34.183	-2.455	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
	9	44.067	34.313	4.521	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
IMPACT SIDE DOOR	10	10.675	36.387	23.299	N/A	N/A	N/A	#VALUE!	#VALUE!		
e a	11	21.264	36.126	23.055	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
L ⊢ Q	12	32.029	35.864	22.687	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
DO AC	13	15.474	37.675	4.489	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
I I	14	23.849	37.740	4.167	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
	15	30.520	37.126	3.403	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
· · · · · ·	16	26.925	-20.089	42.607	27.053	-18.962	42.130	0.128	1.127	-0.478	1.230
1	17	29.736	-8.705	42.848	29.672	-7.591	41.415	-0.064	1.114	-1.433	1.816
1	18	30.619	1.754	42.924	30.334	2.913	40.731	-0.285	1.160	-2.193	2.497
1	19	29.733	14.862	42.861	29.204	15.936	39.879	-0.529	1.074	-2.982	3.214
1	20	27.375	25.195	42.401	26.573	26.133	39.056	-0.802	0.938	-3.344	3.565
1	21	19.582	-18.314	45.716	19.782	-17.058	45.301	0.200	1.256	-0.415	1.338
щ	22	21.196	-7.177	46.189	21.301	-5.869	45.184	0.105	1.308	-1.005	1.653
ROOF	23	22.270	2.510	46.187	22.307	3.727	44.676	0.037	1.218	-1.511	1.941
Ř	24	22.371	13.294	45.880	22.307	14.484	43.935	-0.065	1.191	-1.945	2.281
1	25	20.644	22.391	45.534	20.537	23.707	43.499	-0.107	1.316	-2.035	2.426
1	26	16.074	-17.613	46.180	16.225	-16.336	45.818	0.150	1.276	-0.362	1.335
1	27	16.529	-7.013	46.724	16.704	-5.754	45.947	0.175	1.259	-0.776	1.489
1	28	17.178	2.786	46.863	17.355	4.062	45.705	0.178	1.276	-1.159	1.733
1	29	18.302	13.122	46.439	18.276	14.426	44.866	-0.026	1.305	-1.573	2.044
Ĺ'	30	17.225	21.928	46.078	17.171	23.165	44.247	-0.054	1.237	-1.831	2.210
- ~ ·	31	27.947	29.978	39.932	N/A	N/A	N/A	#VALUE!	#VALUE!		
A PILLAR	32	33.441	31.119	36.803	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
	33	38.461	32.125	33.157	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
<u>ــــــــــــــــــــــــــــــــــــ</u>	34	44.550	33.354	28.359	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
	35	3.991	34.445	24.457	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
1 ~ '	36	0.524	34.533	24.065	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
B	37	3.118	33.005	32.782	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
B PILLAR	38	0.084	33.111	32.676	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!
1	39	2.453	30.288	40.238	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	
1	40	-0.484	30.289	40.428	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!

A Pillar, B Pillar, Side Panel, and Door are disengaged. Points could not be taken.

Figure D-6. Occupant Compartment Deformation Data – Set 2, Passenger, Test No. NYT-1

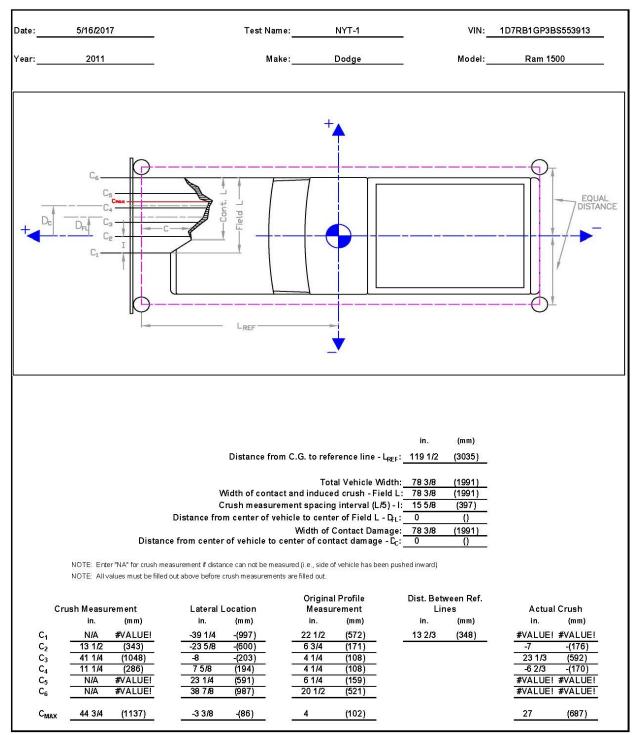


Figure D-7. Exterior Vehicle Crush (NASS) - Front, Test No. NYT-1

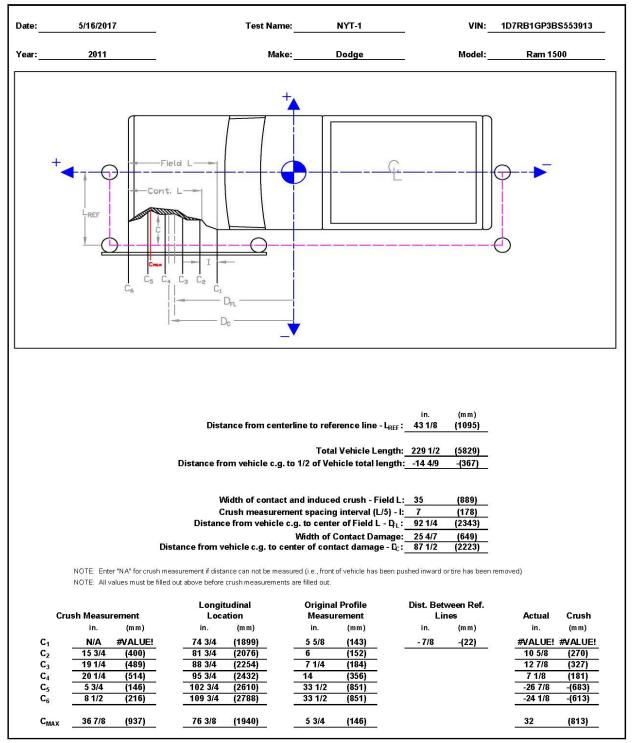


Figure D-8. Exterior Vehicle Crush (NASS) - Side, Test No. NYT-1

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. NYT-1

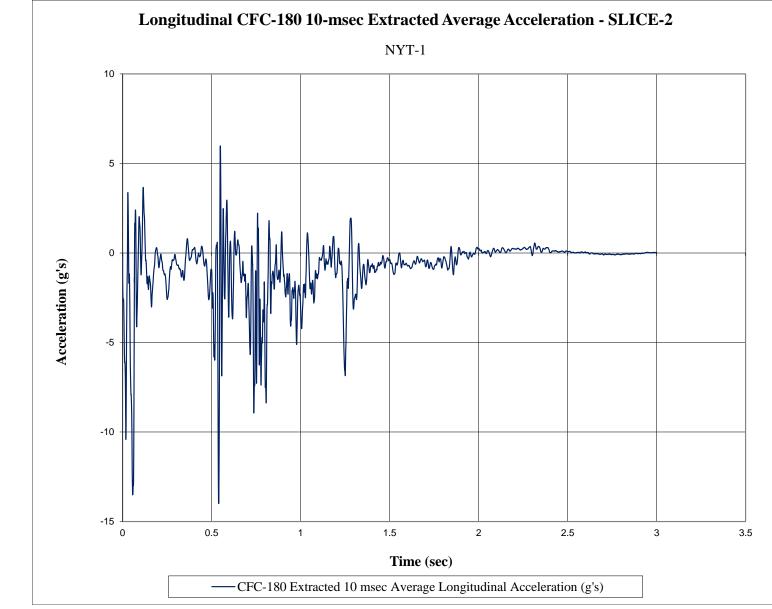


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NYT-1

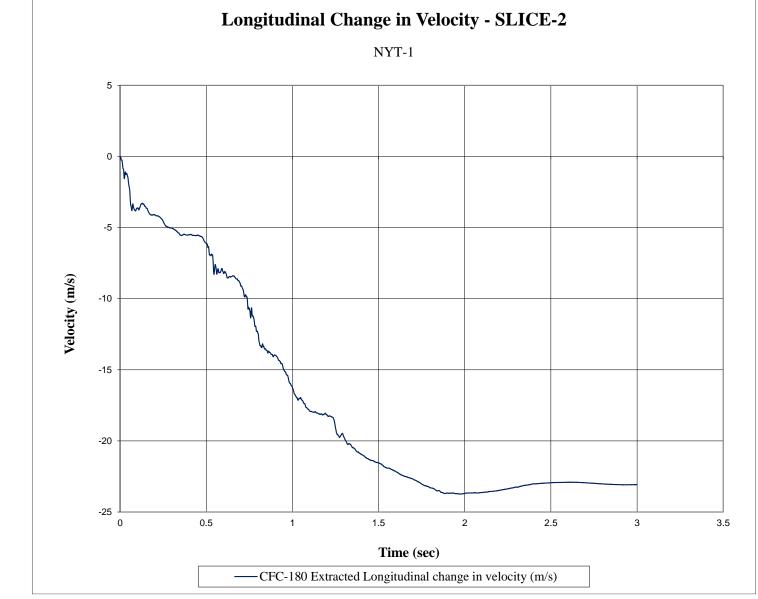


Figure E-2. Longitudinal Occupant Velocity (SLICE-2), Test No. NYT-1

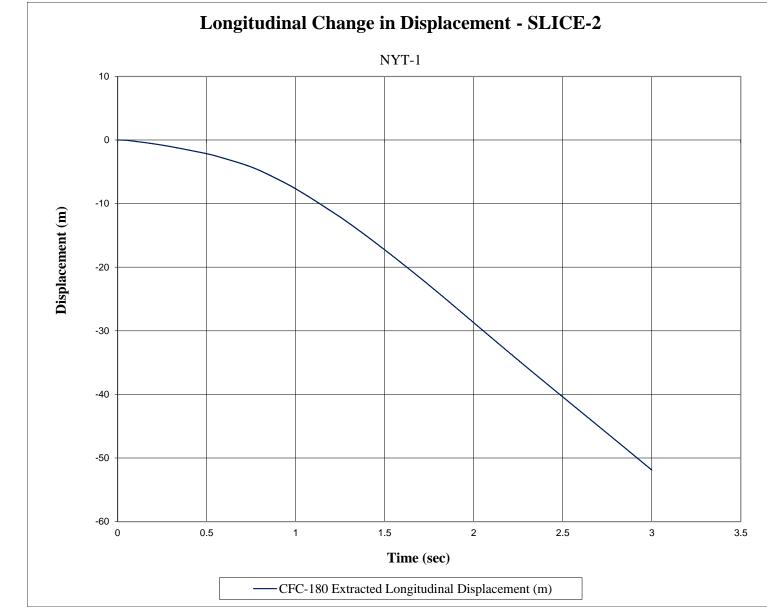


Figure E-3. Longitudinal Occupant Displacement (SLICE-2), Test No. NYT-1

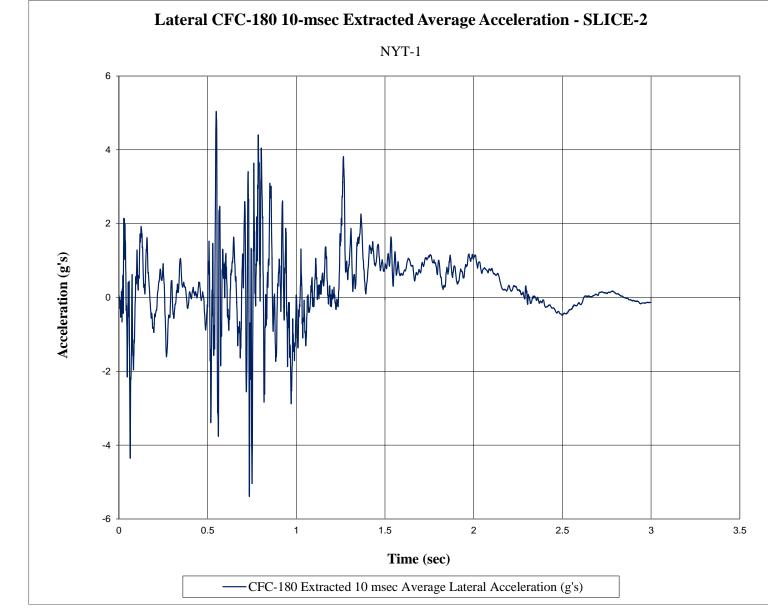
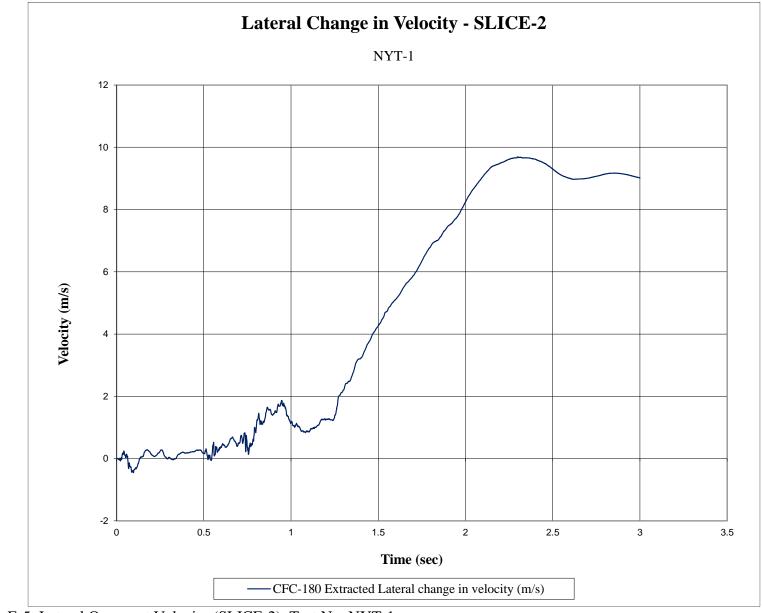



Figure E-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NYT-1

December 16, 2020 MwRSF Report No. TRP-03-391-20

Figure E-5. Lateral Occupant Velocity (SLICE-2), Test No. NYT-1

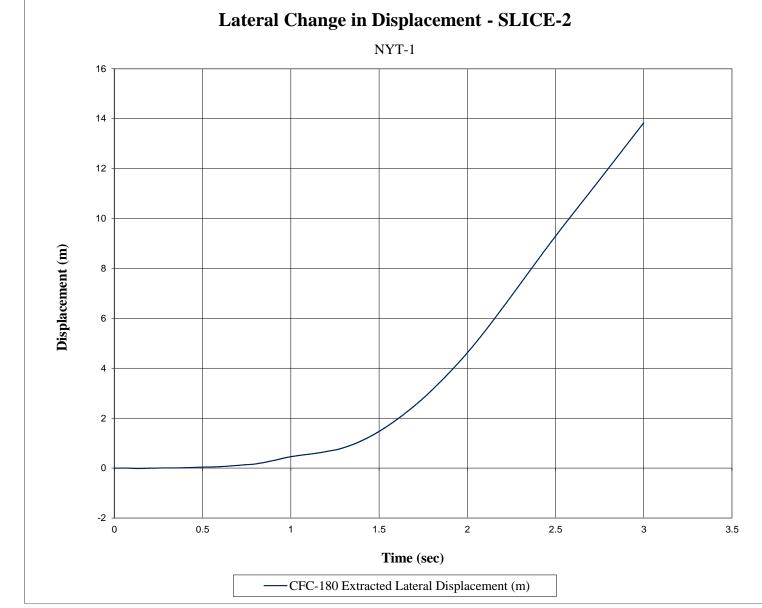


Figure E-6. Lateral Occupant Displacement (SLICE-2), Test No. NYT-1

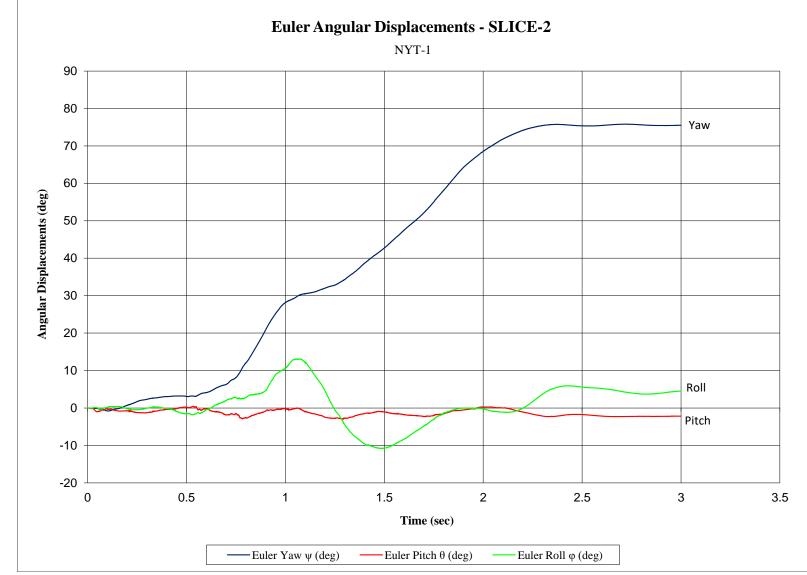


Figure E-7. Vehicle Angular Displacements (SLICE-2), Test No. NYT-1

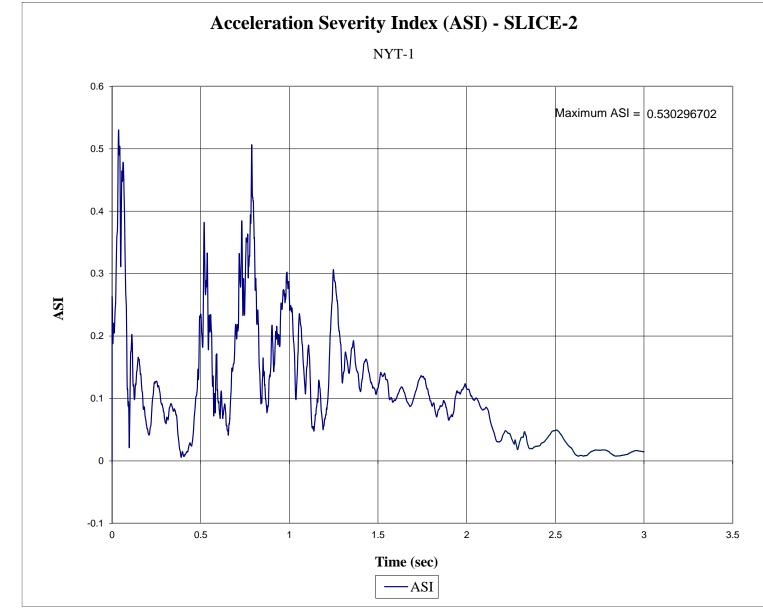


Figure E-8. Acceleration Severity Index (SLICE-2), Test No. NYT-1

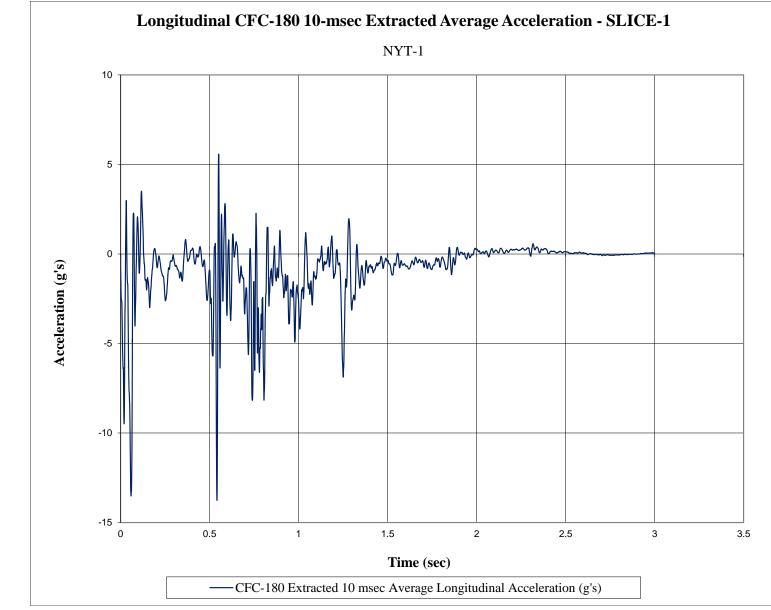


Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NYT-1

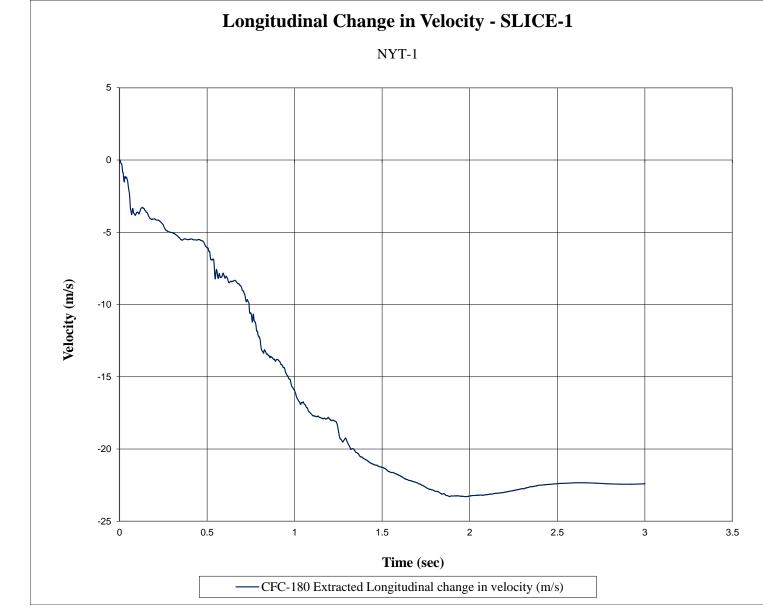


Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NYT-1

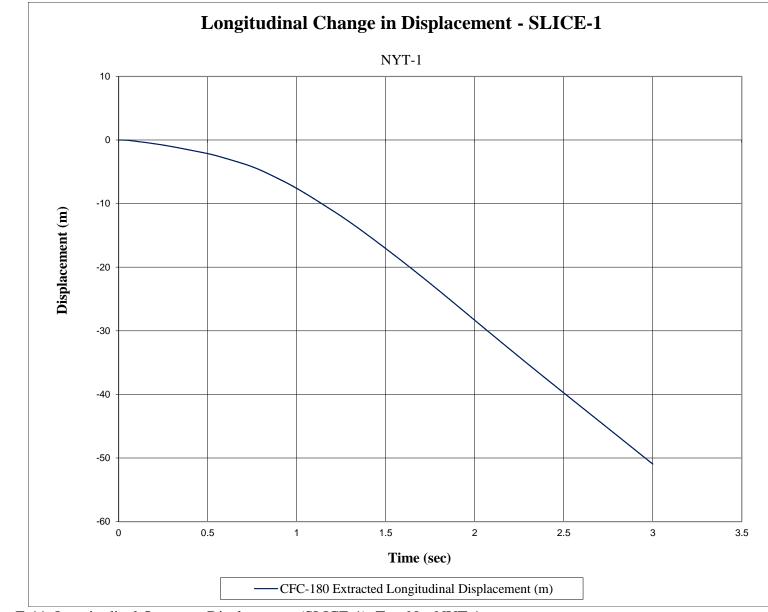


Figure E-11. Longitudinal Occupant Displacement (SLICE-1), Test No. NYT-1

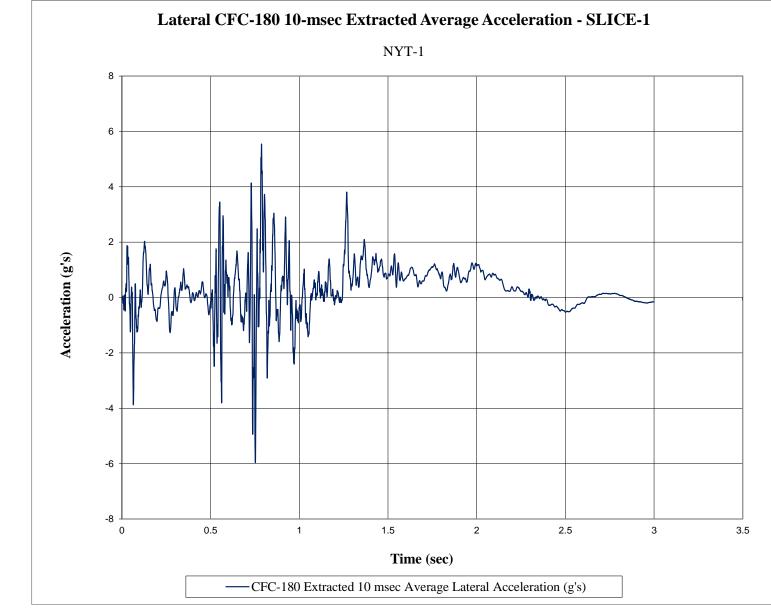


Figure E-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NYT-1

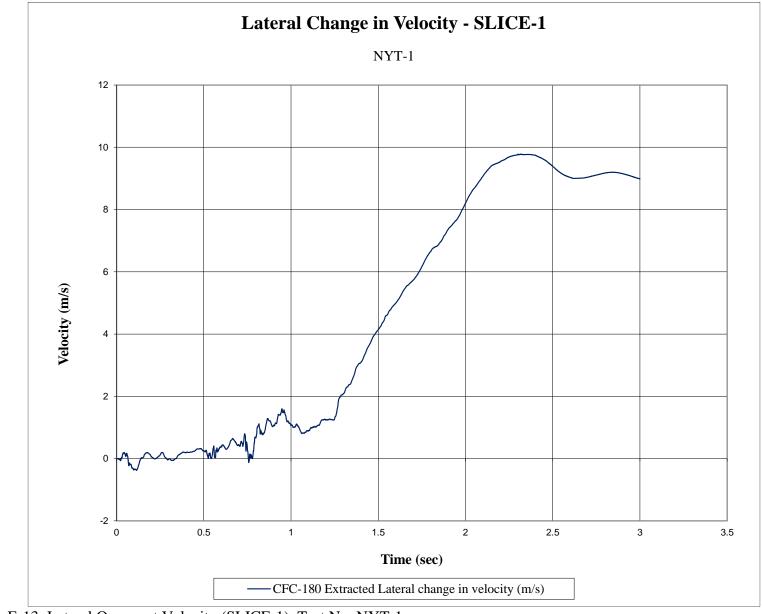


Figure E-13. Lateral Occupant Velocity (SLICE-1), Test No. NYT-1

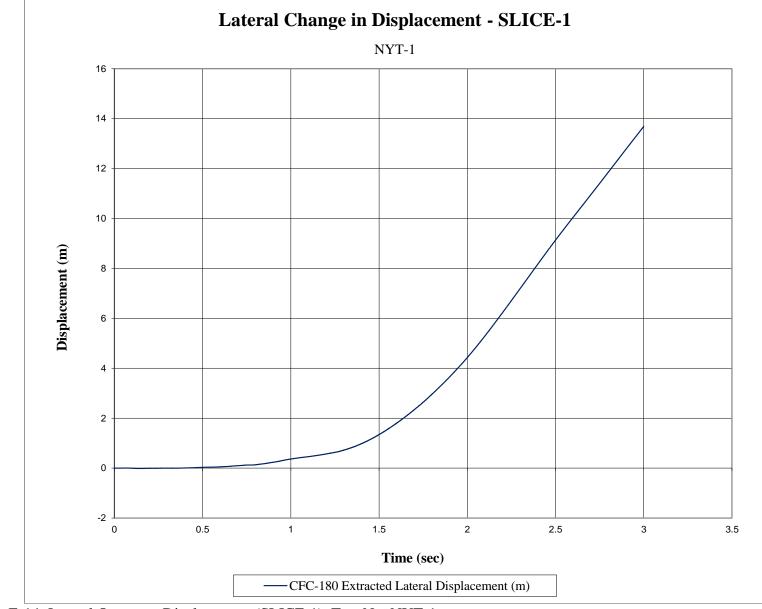


Figure E-14. Lateral Occupant Displacement (SLICE-1), Test No. NYT-1

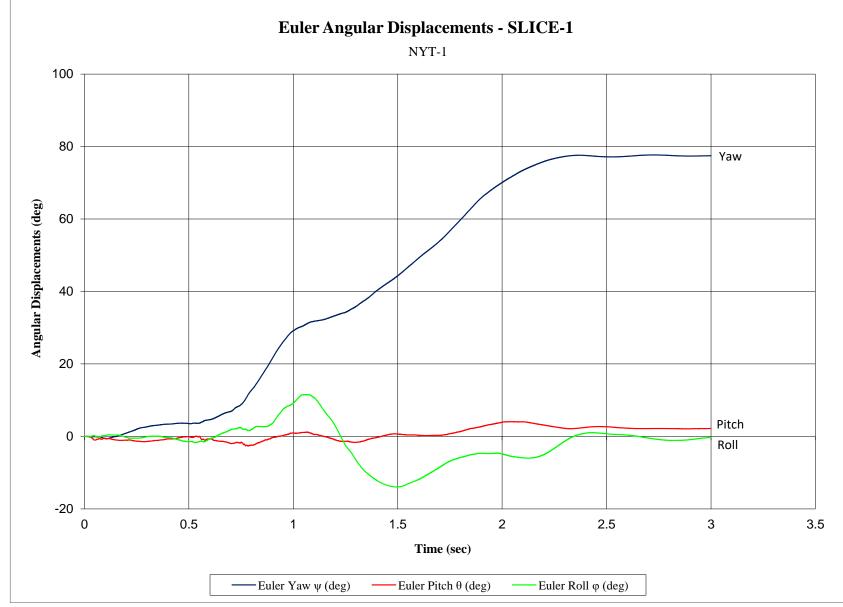


Figure E-15. Vehicle Angular Displacements (SLICE-1), Test No. NYT-1

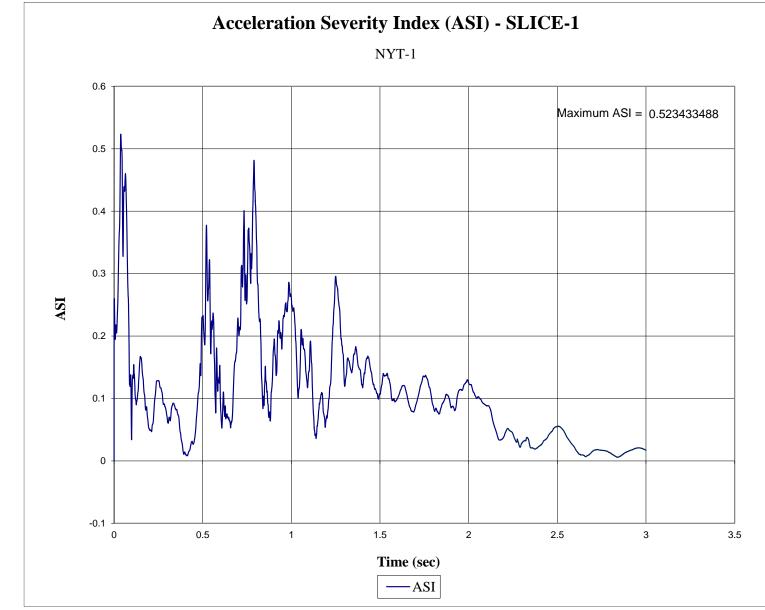


Figure E-16. Acceleration Severity Index (SLICE-1), Test No. NYT-1

END OF DOCUMENT